$\beta$-Glucuronidase Inhibitory Activity of Bromophenols Purified from Grateloupia elliptica

  • Kim, Keun-Young (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Choi, Kwan-Sik (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Kurihara, Hideyuki (School of Fisheries Sciences, Hokkaido University) ;
  • Kim, Sang-Moo (Faculty of Marine Bioscience and Technology, Kangnung National University)
  • Published : 2008.10.31

Abstract

$\beta$-Glucuronidases of intestinal bacteria are capable of retoxifying compounds that have been detoxified by liver glucuronidation, which is one of the most important detoxication processes in the liver. Therefore, this enzyme is known to accelerate colon cancer invasion and metastasis. Two bromophenols, 2,4,6-tribromophenol (I) and 2,4-dibromophenol (II), were purified from the red alga Grateloupia elliptica. $IC_{50}$ values of bromophenol I and II against Escherichia coli $\beta$-glucuronidase were 5.4 and 8.5 mg/mL, respectively. Hence, bromophenols of G. elliptica, a potent $\beta$-glucuronidase inhibitor, can be used as a novel pharmaceutical agent for the prevention and treatment of colon cancer.

Keywords

References

  1. Moore WEC, Holdeman LV. Discussion of current bacteriologic investigations of the relationships of the between intestinal flora, diet, and colon cancer. Cancer Res. 35: 3418-3420 (1975)
  2. Armstrong B, Doll R. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int. J. Cancer 15: 617-631 (1975) https://doi.org/10.1002/ijc.2910150411
  3. Prizont R, Konigsberg N. Identification of bacterial glycosidases in rat cecal contents. Digest. Dis. Sci. 26: 773-777 (1981) https://doi.org/10.1007/BF01309607
  4. Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology 86: 174-193 (1984)
  5. Levvy GA, Conchie J. ${\beta}-Glucuronidase$ and hydrolysis of glucuronides. pp. 301-364. In: Glucurinic Acid. Dutton GJ (ed). Academic Press, New York, NY, USA (1966)
  6. SaitoY, Takano T, Rowland I. Effects of soybean oligosaccharides on the human gut microflora in vitro culture. Microb. Ecol. Health D. 5: 105-110 (1992) https://doi.org/10.3109/08910609209141296
  7. Fischer LJ, Millburn P, Smith RL, Williams RT. The fate of $(^{14}C)$ stilboestriol in the rat. Biochem. J. 100: 698-705 (1966)
  8. Weisburger JH, Grantham PH, Horton RE, Weisburger EK. Metabolism of the carcinogen N-hydroxy-N-2-fluorenylacetamide in germ free rats. Biochem. Pharmacol. 19: 151-162 (1970) https://doi.org/10.1016/0006-2952(70)90336-9
  9. Sekikawa C, Kurihara H, Goto K. Inhibition of ${\beta}-glucuronidase$ by extracts of Chondria crassicaulis. Bull. Fish. Sci. Hokkaido Univ. Japan 53: 27-30 (2002)
  10. Hashimoto K, Saito H, Ohsawa R. Glycopolymeric inhibitors of ${\beta}-glucuronidase.$ III. Configurational effects of hydroxyl groups in pendant glyco-units in polymers upon inhibition of ${\beta}-glucuronidase.$ J. Polym. Sci. 44: 4895-4903 (2006) https://doi.org/10.1002/pola.21584
  11. Kawasaki M, Hayashi T, Arisawa M, Morita N, Berganza LH. 8- Hydroxytricetin 7-glucuronide, a ${\beta}-glucuronidase$ inhibitor from Scoparia dulcis. Phytochemistry 27: 3709-3711 (1988) https://doi.org/10.1016/0031-9422(88)80811-2
  12. Hayashi T, Kawasaki M, Okamura K, Tamada Y, Morita N. Scoparic acid A, a ${\beta}-glucuronidase$ inhibitors from Scorparia dulcis. J. Nat. Prod. 55: 1748-1755 https://doi.org/10.1021/np50090a005
  13. Kim DH, Shim SB, Kim NJ, Jang IS. ${\beta}-Glucuronidase$ inhibitory activity and hepatoprotective effect of Ganoderma lucidum. Biol. Pharm. Bull. 22: 162-164 (1999) https://doi.org/10.1248/bpb.22.162
  14. Nawaz HR, Malik A, Khan PM, Shujaat S, Rahman AU. A novel ${\beta}-glucuronidase$ inhibiting triterpenoid from Paeonia emodi. Chem. Pharm. Bull. 48: 1771-1773 (2000) https://doi.org/10.1248/cpb.48.1771
  15. Di Bello IC, Dorling P, Fellows L, Winchester B. Specific inhibition of hyman ${\beta}-D-glucuronidase$ and ${\alpha}-L-iduronidase$ by a trihydroxy pipecolic acid of plant origin. FEBS Lett. 176: 61-64 (1984) https://doi.org/10.1016/0014-5793(84)80911-4
  16. Shim SB, Kim NJ, Kim DH. ${\beta}-Glucuronidase$ inhibitory activity and hepatoprotective effect of 18-glycyrrhetinic acid from the Rhizomes of Glycyrrhiza uralensis. Planta Med. 66: 40-43 (2000) https://doi.org/10.1055/s-2000-11109
  17. Shim SB, Park JS, Kim NJ, Kim DH. ${\beta}-Glucuronidase-inhibitory$ activity and hepatoprotective effect of herbal medicines. Korean J. Pharmacogn. 30: 111-114 (1999)
  18. Han MJ, Kim NY. The preference and inhibitory effect of root vegetables on ${\beta}-glucuronidase$ and tryptophanase of human intestinal bacteria. Korean J. Soc. Food Sci. 15: 555-564 (1999)
  19. Han MJ, Bae EA, Kim DH. Effect of Lentinus edodes water extract on some enzymes of mouse intestinal bacteria. Korean J. Food Sci. Technol. 33: 142-145 (2001)
  20. Zhang C, Zhang Y, Chen J, Liang X. Purification and characterization of $baicalcin-{\beta}-glucuronidase$ hydrolyzing baicalin to baicalein from freah roots of Scutellaria viscidula Bge. Process Biochem. 40: 1911-1915 (2005) https://doi.org/10.1016/j.procbio.2004.07.003
  21. Rhee YK, Kim DH, Han MJ. Inhibitory effect of Zizyphi fructus on ${\beta}-glucuronidase$ and tryptophanase of human intestinal bacteria. Korean J. Food Sci. Technol. 30: 199-205 (1998)
  22. Narita M, Nagai E, Hagiwara H, Aburada M, Yokoi T, Kamataki T. Inhibition of ${\beta}-glucuronidase$ by natural glucuronides of kampo medicines using glucuronide of SN-38 (7-ethyl-10-hydroxycamptothecin) as a substrate. Xenobiotica 23: 5-10 (1993) https://doi.org/10.3109/00498259309059356
  23. Tohda H, Kurihara H, Hosokawa M, Takahashi K. Inhibition of ${\beta}-glucuronidase$ by purine nucleotides. Fish. Sci. 65: 667-668 (1999) https://doi.org/10.2331/fishsci.65.667
  24. Kurihara H, Ando J, Hatano M. Sulfoquinovosyldacylglycerol as an alpha-glucosidase inhibitor. Bioorg. Med. Chem. Lett. 5: 1241-1244 (1995) https://doi.org/10.1016/0960-894X(95)00196-Z
  25. Kurihara H, Mitani T, Kawabata J, Takahashi K. Inhibitory potencies of bromophenols from Rhodomelaceae algae against ${\alpha}-glucosidase$ activity. Fish. Sci. 65: 300-303 (1999) https://doi.org/10.2331/suisan.65.300
  26. Kurihara H, Mitani T, Kawacata J, Takahashi K. Two new bromophenols from red alga Odonthalia cormbifera. J. Nat. Rod. 62: 882-884 (1999)
  27. Yermakova SP, Sova VV, Zvyagintseva TN. Brown seaweed protein as an inhibitor of marine mollusk $endo-(1{\rightarrow3)-{\beta}-D-glucanases.$ Carbohyd. Res. 227: 229-237 (2002)
  28. Sugano M, Sato A, Nagak H, Yoshiok S, Shiraki T, Horikoshi H. Aldose reductase inhibitors from the red alga, asparagopsis taxiformis. Tetrahedron Lett. 31: 7015-7016 (1990) https://doi.org/10.1016/S0040-4039(00)97230-7
  29. Kim YC, Kim MY, Takaya Y, Niwa M, Chung SK. Phenolic antioxidants isolated from mulberry leaves. Food Sci. Biotechnol. 16: 854-857 (2007)
  30. Jun M, Lee SH, Choi SH, Bae KH, Seong YH, Lee KB, Song KS. Plant phenolics as ${\beta}-secretase$ (BACE1) inhibitors. Food Sci. Biotechnol. 15: 617-624 (2006)
  31. Reese ET, Parrish FW. Nojirimycin and D-glucose-1, 5-lactone as inhibitors of carbohydrases. Carbohyd. Res. 18: 381-388 (1968)
  32. Bohm BA. Introduction of flavonoids. p. 503. In: Chemistry and Biochemistry of Organic Natural Products. Ravin-dranath B (ed). Hardwood Academic Publishers, Calcutta, India (1998)
  33. Suffness M, Newman DJ, Snader K. Discovery and development of antineoplastic agents from natural sources. Bioorg. Marine Chem. 3: 131-168 (1989)
  34. Colgate SM, Molyneux RJ. Detection, isolation, and structural determination. p. 35. In: Bioactive Natural Products. CRC Press, Boca Raton, FL, USA (1993)
  35. Stern JL, Hagerman AE, Steinberg PD, Mason PK. Phlorotannins-protein interactions. J. Chem. Ecol. 22: 1877-1899 (1996) https://doi.org/10.1007/BF02028510
  36. Pierpoint WS. O-Quinones formed in plant extracts. Their reactions with amino acids and peptides. J. Biochem. 112: 609-616 (1969) https://doi.org/10.1042/bj1120609
  37. Tewari N, Tiwari VK, Mishra RC, Tripathi RP, Srivastava AK, Ahmad R, Srivastava R, Srivastava BS. Synthesis and bioevaluation glycosyl ureas as alpha-glucosidase inhibitors and their effect on mycobacterium. Bioorgan. Med. Chem. 11: 2911-2922 (2003) https://doi.org/10.1016/S0968-0896(03)00214-1
  38. Nakajima M, Irimura T, Nicolson GL. Haparanases and tumor metastasis. J. Cell Biochem. 36: 157-167 (1988) https://doi.org/10.1002/jcb.240360207
  39. Toyoshima M, Nakajima M. Human heparanase: Purification, characterization, cloning, and expression. J. Biol. Chem. 274: 24153-24160 (1999) https://doi.org/10.1074/jbc.274.34.24153
  40. Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am. J. Pathol. 157: 1167-1175 (2000) https://doi.org/10.1016/S0002-9440(10)64632-9
  41. Gudiel-Urbano M, Goni I. Effect of edible seaweeds (Undaria pinnatifida and Porphyra ternera) on the metabolic activities of intestinal microflora in rats. Nutr. Res. 22: 323-331 (2002) https://doi.org/10.1016/S0271-5317(01)00383-9
  42. Takada H, Hirook T, Hiramatsu Y, Yamamoto M. Effect of ${\beta}-glucuronidase$ inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Res. 42: 331-334 (1982)