Characteristics of Microwave-assisted Extraction for Catechins from Grape Seed

포도씨 카테킨류의 마이크로웨이브 추출특성

  • Lee, Eun-Jin (Korea Food & Drug Administration) ;
  • Choi, Sang-Won (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Kim, Hyun-Ku (Korea Food Research Institute) ;
  • Kwon, Joong-Ho (Department of Food Science and Technology, Kyungpook National University)
  • Published : 2008.10.31

Abstract

Microwave energy was applied to the extraction of functional catechins from grape seed. The solvent, absolute ethanol, reached the boiling point when exposed for less than 3 min microwave treatment at 100 W. The effects of independent variables in microwave-assisted extraction (MAE), including microwave power (0-160W, $X_1$), ethanol concentration (0-100%, $X_2$) and extraction time (1-5 min, $X_3$), were investigated on each response variable ($Y_n$), and the contents of catechin and its derivatives were determined via response surface methodology, thereby allowing us to predict their optimal extraction conditions. The predicted maximal values of (+)-catechin, procyanidin $B_2$, (-)-epicatechin, and (-)-epicatechin gallate were 137.99, 72.78, 222.38, and 9.59 mg%, respectively, under different MAE conditions. The predicted extraction conditions for maximum catechin responses were as follows: 104.10 W of microwave power, 45.35% of EtOH, and 4.89 min of extraction time for (+)-catechin (137.99 mg%), 133.16 W, 46.16% and 4.49 min for procyanidin $B_2$ (72.78 mg%), 136.00 W, 41.37% and 4.39 min for (-)-epicatechin (222.38 mg%), 143.20 W, 37.51% and 1.88 min for (-)-epicatechin gallate (9.59 mg%), respectively. The contents of (+)-catechin, procyanidin 1B2 and (-)-epicatechin in MAE were similarly influenced by three independent variables, whereas (-)-epicatechin gallate was influenced less profoundly by ethanol concentration and extraction time.

포도씨에 함유된 기능성 카테킨류를 효과적으로 추출하기 위해서 마이크로웨이브 에너지를 이용하였다. 에탄올의 마이크로웨이브 가열특성을 확인하였을 때 100W에서 3분 이내에 끓는점에 도달하였다. 중심합성계획에 따라 추출조건(microwave power 0-120W, 에탄올 농도 0-100%, 추출시간 1-5분)을 설계하고, 조건별 추출물의 카테킨류 함량을 회귀분석함으로써 최적 추출조건을 예측하였다. (+)-Catechin의 최적 추출조건은 microwave power 104.10W, 에탄올 농도 45.35%, 추출시간 4.89분으로, 예측된 정상점은 최대점을 보이면서 최대 추출 값이 137.99 mg%였다. Procyanidin $B_2$의 최적 추출조건은 133.16W, 46.16%, 4.49분이며, 최대 추출 값은 72.78 mg%으로 예측되었다. 또한 (-)-epicatechin은 136.00W, 41.37%, 4.39분에서 최대 222.38 mg%를 추출할 수 있으며, (-)-epicatechin gallate는 143.20W, 37.51% 및 1.88min에서 9.59mg%를 추출할 수 있는 것으로 예측되었다. 이때 (+)-catechin, procyanidin $B_2$ 및 (-)-epicatechin은 microwave power, 에탄올 농도, 추출시간 등 3가지 독립변수에 모두 유사하게 영향을 받았지만, (-)-epicatechin gallate는 microwave power에만 주로 영향을 받는 것으로 나타났다.

Keywords

References

  1. Kwon JH, Park KH, Park YK, Lee KT, Chi SH, Hwang KT. Food Chemistry. Shinkwang Press, Seoul, Korea. pp. 275-278 (2008)
  2. Chung HY, Yoon SJ. Antioxidant activity of grape seed extract. J. Korean Soc. Food Sci. Nutr. 31: 893-898 (2002) https://doi.org/10.3746/jkfn.2002.31.5.893
  3. KFDA. Food Additives Code, Korea Food & Drug Administration. Seoul, Korea. pp. 992-993 (2003)
  4. KFDA. Health Functional Food Code, Korea Food & Drug Administration, Seoul, Korea. pp. 100-101 (2006)
  5. Prieur C, Rigaud J, Cheynier V, Moutounet M. Oligomeric and polymeric procyanidins from grapes. Phytochemistry. 36: 781-784 (1994) https://doi.org/10.1016/S0031-9422(00)89817-9
  6. Ricardo da Silva JM, Rigaud J, Cheynier V, Cheminat A, Moutounet M. Procyanidin dimers and trimers from grape seeds. Phytochemistry. 30: 1259-1264 (2002) https://doi.org/10.1016/S0031-9422(00)95213-0
  7. Pekic B, Kovac V, Alonso E, Revilla E. Study of the extraction of proanthocyanidins from grape seeds. Food Chem. 61: 201-206 (1998) https://doi.org/10.1016/S0308-8146(97)00128-3
  8. Escribano-Bailon T, Gutierrez-Fernandez Y, Rivas-Gonzalo JC, Santos-Buelga C. Charaterization of procyanidins of vinifera variety Tinta del pais grape seeds. J. Agr. Food Chem. 40: 1794- 1799 (1992) https://doi.org/10.1021/jf00022a013
  9. Gabetta B, Fuzzati N, Griffini A, Lolla E, Pace R, Ruffilli T, Peterlongo F. Characterization of proanthocyanidins from grape seeds. Fitoterapia 71: 162-175 (2000) https://doi.org/10.1016/S0367-326X(99)00161-6
  10. Saucier C, Mirabel M, Daviaud F, Longieras A, Glories Y. Rapid fraction of grape seed proanthocyanidins. J. Agr. Food Chem. 49: 5732-5735 (2001) https://doi.org/10.1021/jf010784f
  11. Peng Z, Hayasaka Y, Iland PG, Sefton M, Hoj P, Waters EJ. Quantitative analysis of polymeric procyanidins (tannins) from grape (Vitis venifera) seeds by reverse phase high-performance liquid chromatography. J. Agr. Food Chem. 49: 26-31 (2001) https://doi.org/10.1021/jf000670o
  12. Tabib K, Bitri L, Besancon P, Rouanet J. Polymeric grape seed tannins prevent plasma-cholesterol changes in high-cholesterol-fed rats. Food Chem. 49: 403-406 (1994) https://doi.org/10.1016/0308-8146(94)90012-4
  13. Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73: 285-290 (2001) https://doi.org/10.1016/S0308-8146(00)00298-3
  14. Jayaprakasha GK, Selvi T, Sakariah KK. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 36: 117-122 (2003) https://doi.org/10.1016/S0963-9969(02)00116-3
  15. Chung HY, Pack DK. Antimicrobial activity of grape seed extract. J. Korean Soc. Food Sci. Nutr. 32: 109-114 (2003) https://doi.org/10.3746/jkfn.2003.32.1.109
  16. Jang JK, Han JY. The antioxidant ability of grape seed extracts. Korean J. Food Sci. Technol. 34: 524-528 (2002)
  17. Pack SJ, Lee HY, Oh DH. Free radical scavenging effect of seed and skin extracts from 'Campbell Early' grape (Vitis labruscana B.). J. Korean Soc. Food Sci. Nutr. 32: 115-118 (2003) https://doi.org/10.3746/jkfn.2003.32.1.115
  18. Lee WY, Chang KS, Choi YH. Extraction of phenolic compounds from grape seed using supercritical $ CO_2$ and ethanol as a co-solvent. Korean J. Posthar. Sci. Technol. 7: 177-183 (2000)
  19. ParJRJ, Sigouin M, Lapointe J. Microwave-assisted natural products extraction. US Patent 5,002,784,26 (1991)
  20. ParJRR, Matni G, Yaylayan V, Belanger JMR, Li K, Rule C, Thibert B, Mathe D, Racquqult P. Use of the Microwave-assisted process in extraction of fat from meat, dairy and egg product under atmosphere pressure conditions, J. Assoc. Off. Ama. Chem. 80: 928-933 (1997)
  21. Lopez-Avila V, Young R, Tepitsky N. Microwave-assisted process as an alternative to soxhlet, sonication, and supercritical fluid process. J. Assoc. Off. Ama. Chem, 79: 142-156 (1996)
  22. Young JC. Microwave-assisted process of the fungal metabolite ergosterol and total fatty acids. J. Agr. Food Chem. 43: 2904- 2910 (1995) https://doi.org/10.1021/jf00059a025
  23. Chen SS, Spiro M. Study of microwave process of essential oil constituents from plant materials. J. Microwave Power EE 29: 231-241 (1994)
  24. Bureau S, Razungles A, Baumes R, Bayonove C. Glycosylated flavor precursor extraction by microwave from grape juice and grapes. J. Food Sci. 61: 557-561 (1996) https://doi.org/10.1111/j.1365-2621.1996.tb13156.x
  25. Kwon JH, Blanger JMR, ParJRJ, Yaylayan VA. Application of microwave- assisted process (MAP) to the fast extraction of ginseng saponins. Food Res. Int. 36: 491-498 (2003) https://doi.org/10.1016/S0963-9969(02)00197-7
  26. Lee JE, Kwon JH, Kim HK. Pre-establishment of microwaveassisted extraction conditions for oleoresins from dried red pepper. Korean J. Postharvest Sci. Technol. 7: 267-272 (2000)
  27. AOAC. Official Method of Analysis of AOAC Intl. 15th ed. Method I. 976.06, 954.02, 942.05, 989.03. Association of Official Analytical Chemists, Washington DC, USA (1990)
  28. Moon SO, Lee JY, Kim EJ, Choi SW. An improved method for determination of catechin and its derivatives in extract and oil of grape seeds. Korean J Food Sci Technol. 35: 576-585 (2003)
  29. Kwon JH, Blanger JMR, ParJRJ. Optimization of microwaveassisted extraction (MAP) for ginseng components by response surface methodology. J. Agr. Food Chem. 51: 1807-1810 (2003) https://doi.org/10.1021/jf026068a
  30. Kwon JH, Lee GD, Belanger JMR, Pare JRJ. Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave- assisted process (MAP). Int. J. Food Sci. Tech. 38: 615-622 (2003) https://doi.org/10.1046/j.1365-2621.2003.00688.x
  31. Lee GD, Lee JE, Kwon JH. Application of response surface methodology in food industry. Food Sci. Ind. 33: 33-45 (2000)
  32. Myers RH. Response Surface Methodology. Allyn and Bacon Inc., Boston, MA, USA. pp. 61-28 (1971)
  33. Gontard N, Guilbert S, Cuq JL. Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 57: 190-196 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
  34. SAS Institute Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (2002)
  35. Matha LA, James PB. The Mathematica Handbook, compatible with Mathematica Version 2.0. Academic Press, Inc., Harcourt Brace & Co., MA, USA (1992)
  36. Kwon JH. High speed extraction of phytochemicals from food and natural products using microwave-assisted process. Food Sci. Ind. 31: 43-55 (1998)
  37. Lee EJ, Kwon JH. Establishment of microwave-assisted extraction for grape seed ingredients by extraction conditions. Korean J. Food Preserv. 13: 216-222 (2006)