Influence of Glass-Frit Size on the Microstructural Evolution of Conductive Silver Paste

전도성 실버 페이스트의 미세구조 발달에 미치는 glass-frit 크기의 영향

  • Han, Hyun Geun (Department of Advanced Materials Engineering, Chosun University) ;
  • Seo, Dong Seok (Department of Advanced Materials Engineering, Chosun University) ;
  • Lee, Jong Kook (Department of Advanced Materials Engineering, Chosun University)
  • 한현근 (조선대학교 신소재공학과) ;
  • 서동석 (조선대학교 신소재공학과) ;
  • 이종국 (조선대학교 신소재공학과)
  • Received : 2008.04.03
  • Published : 2008.08.25

Abstract

The effect of glass-frit size on microstructural evolution and electrical resistance of conductive silver paste was investigated. Silver paste was prepared by mixing 70 wt% commercial silver powder with $1.6{\mu}m$, 3 wt% Bi based glass-frit and 27 wt% organic vehicle. Two different sizes of glass-frit were obtained by ball-milling of commercial glass-frit ($3{\mu}m$) for 3 and 5 days, which had an average particle size of 1.0 and $0.5{\mu}m$. The smaller glass-frit was melt at low sintered temperature and rapidly spread between the silver particles, which is induced the dense networking among silver particles and strong adhesiveness to $Al_2O_3$ substrate. The silver film with smaller glass-frit sintered at $500^{\circ}C$ showed the small pore size and low porosity resulting in low electrical resistivity of $4{\mu}{\Omega}cm$.

Keywords

References

  1. B. K. Koo, H. G. Kim, J. Kor. Ceram. Soc. 25, 623 (1988)
  2. R. W. Vest, J. Am. Ceram. Bull. 65, 631 (1988)
  3. B. Walton, Radio Electron. Eng. 43, 139 (1975)
  4. H. H. Nersisyan, J. H. Lee, H. T. Son, C. W. Won, and D. Y. Maeng, Mater. Res. Bull. 37, 949 (2003)
  5. P. F. Becher and W. L. Newell, J. Mater. Sci. 12, 90 (1977) https://doi.org/10.1007/BF00738474
  6. T. T. Hitch, J. Electron. Mater. 3, 553 (1974) https://doi.org/10.1007/BF02652957
  7. K. C. Chang, T. H. Noh, B. K. Koo, D. Y. Lim, H. G. Kim, Journal of the Microelectronics & Packaging Society. 7, 29 (2000)
  8. T. Takamori, Solder glasses, Academic Press. Inc., New York, 173 (1979)
  9. S. B. Rane, T. Seth, G. J. Phatak, D. P, Amalnerkar, and B. K. Das, Mater. Lett. 57, 3096 (2003) https://doi.org/10.1016/S0167-577X(03)00003-X
  10. J. C. Lin, and C. Y. Wang, Mater. Chem. Phys. 45, 253 (1996) https://doi.org/10.1016/0254-0584(96)80116-7
  11. Y. K. Lee, C. S. Kang, J. K. Yoo, B. G. Ryu and D. H. Ahn, J. Kor. Inst. Met. & Mater. 36, 1692 (1998)
  12. E. S. Lim, B. S. Kim, J. H. Lee, J. J. Kim, J. Non-Cryst. Solids 352, 821 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.01.021
  13. S. W. Lee, W. K. Sung, S. J. Hwang, and H. S. Kim, Physic & High technology 9, 18 (2007)
  14. R. M. German, Sintering Theory and Practice, p231. Jhon Wiley & Sons, Inc., Canada (1996)
  15. C. S. Lee, J. R. Yoo, K. W. Jung and S. C. Choi, J. Kor. Ceram. Soc. 37, 628 (2001)
  16. H. S. Kim, J. C. Choi, B. O. Rhee and S. C. Choi, J. Microelectronics & Packaging Society 10, 47 (2003)