Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys

Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향

  • Oh, Mi-Young (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, College of Dentistry) ;
  • Kim, Won-Gi (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, College of Dentistry) ;
  • Choe, Han-Cheol (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, College of Dentistry)
  • 오미영 (조선대학교 치과대학 생체재료학교실 및 생체재료 나노계면 활성화센터) ;
  • 김원기 (조선대학교 치과대학 생체재료학교실 및 생체재료 나노계면 활성화센터) ;
  • 최한철 (조선대학교 치과대학 생체재료학교실 및 생체재료 나노계면 활성화센터)
  • Received : 2008.08.08
  • Published : 2008.10.25

Abstract

Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

Keywords

Acknowledgement

Supported by : 조선대학교

References

  1. H. Mckellop, K. Markolf, Amstutz, J. Biomed. Master. Res. 15, 619 (1981). https://doi.org/10.1002/jbm.820150503
  2. W. Rostocker, J. O. Galante, J Biomed Master Res. 10, 303 (1976). https://doi.org/10.1002/jbm.820100211
  3. T. Ahmed, M. Long, J,Silvestri, C. Ruiz, H. J. Rack, Sci. Technol. 2, 1760 (1995).
  4. J. P. Landsberg, B. McDonald, F. Watt, Nature(London) 360, 65 (1992). https://doi.org/10.1038/360065a0
  5. S. Yumoto, International Journal of PIXE 4, 493 (1992).
  6. Y. Okazaki, M.. Ohota, Y. Ito, T. Tateishi, J. Japan Inst. Metals 59, 229 (1995). https://doi.org/10.2320/jinstmet1952.59.2_229
  7. J. A. Davidson, P Kovacks, U.S. Patent no. 5, 169, 597 (1992).
  8. P. O. Ganrot, Health Perspect 65, 363 (1986). https://doi.org/10.2307/3430204
  9. S Ghosh, A Sharma, G Talukder, Biol. Trace Elem. Res. 35, 247 (1992). https://doi.org/10.1007/BF02783770
  10. Y. Okazaki, Y. Ito, A. Ito, T. Tateishi, J. Japan Inst. Metals 57, 332 (1993). https://doi.org/10.2320/jinstmet1952.57.3_332
  11. K. Wang, Mater. Sci Eng. A 213, 134 (1996). https://doi.org/10.1016/0921-5093(96)10243-4
  12. B. O. Aronsson, J. Lausmaa, B. Kasemo, J. Biomed. Master Res. 35, 49 (1997). https://doi.org/10.1002/(SICI)1097-4636(199704)35:1<49::AID-JBM6>3.0.CO;2-M
  13. D. Krupa, J. Baszkiewicz, J. Kozubowski, B. Barcz, G. Gawlik, J. Jagielski, P. Larisch, Surf. Coat. Techno., 96, 223 (1997). https://doi.org/10.1016/S0257-8972(97)00107-2
  14. I. Dion, X. Rogues, N. More, L. Larousse, J. Caix, F. Lefebvre, F. Rouais, J. Gautreau, ch. Baguey, Biomaterials 14, 712 (1993). https://doi.org/10.1016/0142-9612(93)90070-I
  15. H. Kurzweg, R. B. Heimann, T. Troczynski and M. L. Wayman, Biomaterials 19, 1507 (1998). https://doi.org/10.1016/S0142-9612(98)00067-2
  16. S. K. Yen, S. H. Chiou, S. J. Wu, C.C. Chang, S. P. Lin and C. M. Lin, Mater Sci. Eng. C 26, 65 (2006).
  17. A. elbance Bauer, M. Herranen, H. Ljungcrantz, J. O. Carlsson, J. E. Sundgren, Surf. Coat. Technol. 91, 208 (1997). https://doi.org/10.1016/S0257-8972(97)00003-0
  18. Han-Cheol Choe, Yeong-Mu Ko, J. Korean Res. Soc. Dent. Mater. 3, 217 (2004).
  19. T. C Nilson, Oliveira, A Elivelton, Ferreira, T Laís, Duarte, R. Sonia Biaggio, C. Romeu, Rocha-Filho, Nerilso Bocchi, Electrochimica Acta, 51, 2068 (2006). https://doi.org/10.1016/j.electacta.2005.07.015
  20. S. K. Yen, S. H. Chiou, S. J. Wu, C. C. Chang, S. P. Lin. C. M. Lin, Mater. Sci. Eng. C 26, 65 (2006). https://doi.org/10.1016/j.msec.2005.06.050
  21. Zafer Evis, Robert H. Doremus, Materials Letters. 59, 3824 (2005). https://doi.org/10.1016/j.matlet.2005.07.020
  22. Jong-Hyun Jung, Seung-Nam Baek, Kil-Hong Lee, Chil- Nam Choi, Sang-Youl Lee, Hak Noh, J. Korean Res. Soc. Dent. Mater. 26, 155 (1999).
  23. J. E. G Gonzalez and J. C. Mirza-Rosca, J. Electro. Chemi. 471, 109 (1999). https://doi.org/10.1016/S0022-0728(99)00260-0
  24. E. Kobayashi, T. J. Wang, H. Doi, T. Yoneyama and H. Hamanaka, Mater. Sci. Mater. Med. 9, 567 (1998). https://doi.org/10.1023/A:1008909408948
  25. A. K. Shukla, R. balasubramaniam and S. Bhargava, Intermetallics 13, 631 (2005). https://doi.org/10.1016/j.intermet.2004.10.001
  26. N. Ibris, J. C. M. Rosca, J. Electro. Chem. 526, 53 (2002). https://doi.org/10.1016/S0022-0728(02)00814-8