Solvent Extraction of Cobalt Chloride from Strong Hydrochloric Acid Solutions by Alamine336

진한 염산용액에서 Alamine336에 의한 염화코발트의 용매추출

  • Lee, Man-seung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Lee, Jin-Young (Division of Minerals Utilization and Materials, Korea Institute of Geoscience and Mineral Resources)
  • 이만승 (목포대학교 공과대학 신소재공학과) ;
  • 이진영 (한국지질자원연구원 자원활용소재연구부)
  • Received : 2008.01.30
  • Published : 2008.04.22

Abstract

Solvent extraction reaction of cobalt by Alamine336 from strong hydrochloric acid solution was identified by analyzing the solvent extraction data reported in the literature. Analysis of the data by graphical method revealed that Alamine336 took part in the solvent extraction reaction as a monomer in the concentration ranges, [Co(II)] : 0.0169 - 0.102 M, [Alamine336] ; 0.02- 1.75 M, and [HCl ] : 5 - 10 M. The following solvent extraction reaction and equilibrium constant was obtained from the experimental data by considering the activity coefficients of chemical species present in the aqueous phase. $Co^{2+}+2Cl^{-}+R_3NHCl_{org}=CoCl_3\;R_3NH_{org}$, $K_{ex}=2.21$ The distribution coefficients of cobalt predicted in this study agreed well with those reported in the literature.

Keywords

Acknowledgement

Grant : 귀금속자원 고부가가치화 복합기술개발

Supported by : 한국지질자원연구원의

References

  1. H. Watanabe and K. Akatsuka, Analytica Chimica Acta 38, 547 (1967) https://doi.org/10.1016/S0003-2670(01)80624-3
  2. M.S. Lee and K.J. Lee, J. Kor. Inst. Met. & Mater. 42, 205 (2004)
  3. M. Harada, M. Araki, A.H. Bokhari, W. Eguchi and Y. Yamada, The Chemical Engineering Journal 26, 135 (1983) https://doi.org/10.1016/0300-9467(83)80007-0
  4. C.K. Yun, Hydrometallurgy 12, 289 (1984) https://doi.org/10.1016/0304-386X(84)90002-1
  5. S. Stenström, Hydrometallurgy 18, 1 (1987) https://doi.org/10.1016/0304-386X(87)90013-2
  6. N.A. Yakubu, Hydrometallurgy 18, 93 (1987) https://doi.org/10.1016/0304-386X(87)90019-3
  7. T. Sato and K. Sato, Hydrometallurgy 25, 281 (1990) https://doi.org/10.1016/0304-386X(90)90044-3
  8. G. Huifa, S. Jinglan and M.A. Hughes, Hydrometallurgy 25, 293 (1990) https://doi.org/10.1016/0304-386X(90)90045-4
  9. C. Caravaca, F.J. Alguacil and A. Sastre, Hydrometallurgy 40, 263 (1996) https://doi.org/10.1016/0304-386X(95)00013-7
  10. F. Habashi, Handbook of Extractive Metallurgy, p. 928, Wiley-VCH, Weinheim (1997)
  11. M. Filiz, N.A. Sayar and A.A. Sayar, Hydrometallurgy 81, 167 (2006) https://doi.org/10.1016/j.hydromet.2005.12.007
  12. M.S. Lee and Y.J. Oh, J. Kor. Inst. Met. & Mater. 42, 767 (2004)
  13. J.C. Raposo, J. Sanz, G. Borge, M.A. Olazabal and J.M. Madariaga, Fluid Phase Equilibria 155, 1 (1999) https://doi.org/10.1016/S0378-3812(98)00437-3
  14. Y. Belaustegi, M.A. Olazabal and J.M. Madariaga, Fluid Phase Equilibria 155, 21 (1999) https://doi.org/10.1016/S0378-3812(98)00459-2
  15. L.A. Bromley, AIChE Journal 19, 313(1973) https://doi.org/10.1002/aic.690190216