DOI QR코드

DOI QR Code

Structural Properties of Fibril-forming Segments of α-Synuclein

  • Published : 2009.03.20

Abstract

We have performed replica-exchange molecular dynamics simulations on 41 residue peptide mainly composed of NAC (non A$\beta$ component) sequence in $\alpha$-Synuclein. To investigate conformational characteristics of intrinsically unstructured peptides, we carried out structural analysis on the ‘representative structures’ for ensemble of structures occurring at different temperatures. The secondary structure profile obtained from our simulations suggests that the NAC region of $\alpha$-synuclein can be divided into roughly three helical-like segments. It is found that the overall helix-turn-helix like topology is conserved even though the conformational fluctuations grow as the temperature increases. The coordinate-based and the distance-based representative structures exhibit noticeable differences at higher temperatures while they are similar at lower temperatures. It is found that structural variations for the coordinate-based representative structures are much larger, suggesting that distance-based representative structures provide more reliable information concerning characteristic features of intrinsically unstructured proteins. The present analysis also indicates that the conformational features of representative structures at high temperatures might be related to those in membrane or low pH environment.

Keywords

References

  1. Dobson, C. M. Nature 2003, 426, 884 https://doi.org/10.1038/nature02261
  2. Ross, C. A.; Poirier, M. A. Nat. Med. 2004, 10, S10 https://doi.org/10.1038/nm1066
  3. Skovronsky, D. M.; Lee, V. M.-Y.; Trojanowski, J. Q. Annu. Rev. Pathol. Mech. Dis. 2006, 1, 151 https://doi.org/10.1146/annurev.pathol.1.110304.100113
  4. Chiti, F.; Dobson, C. M. Annu. Rev. Biochem. 2006, 75, 333 https://doi.org/10.1146/annurev.biochem.75.101304.123901
  5. Fink, A. Acc. Chem. Res. 2006, 39, 628 https://doi.org/10.1021/ar050073t
  6. Uversky, V. N.; Oldfield, C. J.; Dunker, A. K. Annu. Rev. Biophys 2008, 37, 215 https://doi.org/10.1146/annurev.biophys.37.032807.125924
  7. Dunker, A. K.; Lawson, J. D.; Brown, C. J.; Williams, R. M.; Romero, P.; Oh, J. S.; Oldfield, C. J.; Campen, A. M.; Ratliff, C. M.; Hipps, K. W.; Ausio, J.; Nissen, M. S.; Reeves, R.; Kang, C.; Kissinger, C. R.; Bailey, R. W.; Griswold, M. D.; Chiu, W.; Garner, E. C.; Obradovic, Z. J. Mol. Graph. Modell. 2001, 19, 26 https://doi.org/10.1016/S1093-3263(00)00138-8
  8. Uversky, V. Prot. Sci. 2002, 11, 739 https://doi.org/10.1110/ps.4210102
  9. Wright, P. E.; Dyson, H. J. J. Mol. Biol.1999, 293, 321 https://doi.org/10.1006/jmbi.1999.3110
  10. Dyson, H. J.; Wright, P. E. Curr. Opin. Struct. Biol. 2002, 12, 54 https://doi.org/10.1016/S0959-440X(02)00289-0
  11. Ma, B.; Nussinov, R. Curr. Opin. Chem. Biol. 2006, 10, 445 https://doi.org/10.1016/j.cbpa.2006.08.018
  12. Teplow, D. B.; Lazo, N. D.; Bitan, G.; Bernstein, S.; Wyttenbach, T.; Bowers, M. T.; Baumketner, A.; Shea, J. E.; Urbanc, B.; Cruz, L.; Borreguero, J.; Stanley, H. E. Acc. Chem. Res. 2006, 39, 635 https://doi.org/10.1021/ar050063s
  13. Lucking, C. B.; Brice, A. Cell. Mol. Life. Sci. 2000, 57, 1894 https://doi.org/10.1007/PL00000671
  14. Spillantini, M. G.; Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.; Jakes, R.; Goedert, M. Nature 2006, 388, 839 https://doi.org/10.1038/42166
  15. Shults, C. W. Proc. Natl. Acad. Sci. USA 2006, 103, 1661 https://doi.org/10.1073/pnas.0509567103
  16. Kim, S.; Seo, J.; Suh, Y. Park. Rel. Dis. 2004, 10, S9 https://doi.org/10.1016/j.parkreldis.2003.11.005
  17. Eliezer, D.; Kutluay, E.; Bussell Jr., R.; Browne, G. J. Mol. Biol. 2001, 307, 1061 https://doi.org/10.1006/jmbi.2001.4538
  18. Uversky, V. N.; Li, J.; Fink, A. L. J. Biol. Chem. 2001, 276, 10737 https://doi.org/10.1074/jbc.M010907200
  19. Uversky, V. N. J. Biomol. Struct. Dyn. 2003, 21, 211 https://doi.org/10.1080/07391102.2003.10506918
  20. Lee, I.-H.; Kim, H. J.; Lee, C.-H.; Paik, S. R. Bull. Kor. Chem. Soc. 2006, 27, 1001 https://doi.org/10.5012/bkcs.2006.27.7.1001
  21. Ulmer, T. S.; Bax, A.; Cole, N. B.; Nussbaum, R. L. J. Biol. Chem. 2005, 280, 9595 https://doi.org/10.1074/jbc.M411805200
  22. Iwai, A. I.; Yoshimoto, M.; Masliah, E.; Saitoh, T. Biochemistry 1995, 34, 10139 https://doi.org/10.1021/bi00032a006
  23. Yoon, J.; Park, J.; Jang, S.; Lee, K.; Shin, S. J. Biomol. Struct. Dyn. 2008, 25, 505 https://doi.org/10.1080/07391102.2008.10507197
  24. Cheatham III, T. E.; Cieplak, P.; Kollman, P. A. J. Biomol. Struct. Dyn. 1999, 16, 845 https://doi.org/10.1080/07391102.1999.10508297
  25. Qiu, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C. J. Phys. Chem. A 1997, 101, 3005 https://doi.org/10.1021/jp961992r
  26. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Di Nola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684 https://doi.org/10.1063/1.448118
  27. Ponder, J. W. TINKER: Software Tools for Molecular Design, http://dasher.wustl.edu/tinker
  28. Kabsch, W.; Sander, C. S. Biopolymers 1983, 22, 2577 https://doi.org/10.1002/bip.360221211
  29. McLachlan, A. D. Acta Cryst A. 1982, 38, 871 https://doi.org/10.1107/S0567739482001806
  30. Martin, A. C. R. ProFit, http://www.bioinf.org.uk/software/profit/
  31. Zagrovic, B.; Snow, C. D.; Khaliq, S.; Shirts, M. R.; Pande, V. S. J. Mol. Biol. 2002, 323, 153 https://doi.org/10.1016/S0022-2836(02)00888-4
  32. Lwin, T. Z.; Luo, R. Protein Sci. 2006, 15, 2462
  33. Feig, M.; MacKerell, Jr., A. D.; Brooks, III., C. L. J. Phys. Chem. B 2003, 107, 2831 https://doi.org/10.1021/jp027293y
  34. Freedberg, D. I.; Venable, R. M.; Rossi, A.; Bull, T. E.; Pastor, R. W. J. Am. Chem. Soc. 2004, 126, 10478 https://doi.org/10.1021/ja0484146
  35. Bisaglia, M.; Trolio, A.; Bellanda, M.; Bergantino, E.; Bubacco, L.; Mammi, S. Protein Sci. 2006, 15, 1408 https://doi.org/10.1110/ps.052048706
  36. Yoon, S.; Welsh, W. J. Protein Sci. 2004, 13, 2149 https://doi.org/10.1110/ps.04790604
  37. El-Agnaf, O.; Irvine, G. B. J. Struct. Biol. 2000, 130, 300 https://doi.org/10.1006/jsbi.2000.4262
  38. Fink, A. L. In Misbehaving Proteins: Protein (Mis)Folding, Aggregation, and Stability; Murph, R. M.; Tsai, A. M., Eds.; Springer: 2006
  39. Uversky, V. N.; Li, J.; Fink, A. L. J. Biol. Chem. 2001, 276, 10737 https://doi.org/10.1074/jbc.M010907200
  40. Giasson, B. I.; Murray, I. V. J.; Trojanowski, J. Q.; Lee, V. M.-Y. J. Biol. Chem. 2001, 276, 2380 https://doi.org/10.1074/jbc.M008919200
  41. Lee, H. J.; Choi, C.; Lee, S. J. J. Biol. Chem. 2002, 277, 671 https://doi.org/10.1074/jbc.M107045200
  42. Bisaglia, M.; Trolio, A.; Bellanda, M.; Bergantino, E.; Bubacco, L.; Mammi, S. Protein Sci. 2006, 15, 1408 https://doi.org/10.1110/ps.052048706

Cited by

  1. Dimerization of Fibril-forming Segments of α-Synuclein vol.30, pp.8, 2009, https://doi.org/10.5012/bkcs.2009.30.8.1845