DOI QR코드

DOI QR Code

Experimental Evidence of the Mobility of Hydroperoxyl/Superoxide Anion Radicals from the Illuminated TiO2 Interface into the Aqueous Phase

  • Kwon, Bum-Gun (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Yoon, Je-Yong (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
  • Published : 2009.03.20

Abstract

The understanding of behaviors of hydroperoxyl/superoxide anion radicals (${H_2O_2}^./{O_2}^{-.}$) generated from a photoirradiated $TiO_2$ surface is essential to improve the efficiency of $TiO_2$ photocatalytic reactions by decreasing the recombination of photoinduced electron-hole ($e^--h^+$) pairs. In contrast with previous studies, we found that ${H_2O_2}^./{O_2}^{-.}$ generated on the surface of illuminated $TiO_2$ particles are mobile. ${H_2O_2}^./{O_2}^{-.}$ formed by the photocatalysis of $TiO_2$ particles immobilized onto the inner surface of a coil-quartz tube were forced under a continuous flow through a knotted tubing reactor (KTR) and into the aqueous phase completely separated from the $TiO_2$ particles, and were measured by a chemiluminescence (CL) technique using 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[ 1,2-a]pyrazin-3-one (MCLA) as the reagent. The initial concentration of the ${H_2O_2}^./{O_2}^{-.}$ stream entering the KTR was determined by its half-life (98 s) at pH 5.8. We suggests that the efficiency of $TiO_2$ photocatalytic reactions may be further improved by utilizing the mobility of ${H_2O_2}^./{O_2}^{-.}$.

Keywords

References

  1. Hoffman, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69-96 https://doi.org/10.1021/cr00033a004
  2. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. Reviews 2000, 1, 1-21 https://doi.org/10.1016/S1389-5567(00)00002-2
  3. Hirakawa, T.; Nosaka, Y. Langmuir 2002, 18, 3247-3254 https://doi.org/10.1021/la015685a
  4. Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M. J. Am. Chem. Soc. 2006, 128, 416-417 https://doi.org/10.1021/ja055866p
  5. Bielski, B. H. J.; Allen, A. O. J. Phys. Chem. 1977, 81, 1048-1051 https://doi.org/10.1021/j100526a005
  6. Nosaka, Y.; Yamashita, Y.; Fukuyama, H. J. Phys. Chem. B 1997, 101, 5822-5827 https://doi.org/10.1021/jp970400h
  7. Ishibashi, K.; Nosaka, Y.; Hashimoto, K.; Fujishima, A. J. Phys. Chem. B 1998, 102, 2117-2120 https://doi.org/10.1021/jp973401i
  8. Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. J. Phys. Chem. B 2000, 104, 4934-4938 https://doi.org/10.1021/jp9942670
  9. Hirakawa, T.; Nakaoka, Y.; Nishino, J.; Nosaka, Y. J. Phys. Chem. B 1999, 103, 4399-4403 https://doi.org/10.1021/jp9840984
  10. Hirakawa, T.; Kominami, H.; Ohtani, B.; Nosaka, Y. J. Phys. Chem. B 2001, 105, 6993-6999 https://doi.org/10.1021/jp0112929
  11. Yu, J.; Chen, J.; Li, C.; Wang, X.; Zhang, B.; Ding, H. J. Phys. Chem. B 2004, 108, 2781-2783 https://doi.org/10.1021/jp037585e
  12. Carter, E.; Carley, A. F.; Murphy, D. M. J. Phys. Chem. C 2007, 111, 10630-10638 https://doi.org/10.1021/jp0729516
  13. Fujihira, M.; Satoh, Y.; Osa, T. Nature 1981, 293, 206-208 https://doi.org/10.1038/293206a0
  14. Gerischer, H.; Heller, A. J. Phys. Chem. 1991, 95, 5261-5267 https://doi.org/10.1021/j100166a063
  15. Wang, C.-M.; Heller, A.; Gerischer, H. J. Am. Chem. Soc. 1992, 114, 5230-5234
  16. Zhao, J.; Hidaka, H.; Takamura, A.; Pelizzetti, E.; Serpone, N. Langmuir 1993, 9, 1646-1650 https://doi.org/10.1021/la00031a008
  17. Kwon, B. G. Bull. Korean Chem. Soc. 2008, 29, 785-789 https://doi.org/10.5012/bkcs.2008.29.4.785
  18. Hatchard, C. G.; Parker, C. A. P. Roy. Soc. Lond. 1956, A235, 518-536
  19. Kwon, B. G.; Lee, J. H. Anal. Chem. 2004, 76, 6359-6364 https://doi.org/10.1021/ac0493828
  20. Zheng, J.; Springston, S. R.; Weinstein-Lioyd, J. Anal. Chem. 2003, 75, 4696-4700 https://doi.org/10.1021/ac034429v
  21. Sander, R. Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry, Version 3; http://www.mpch-mainz.mpg.de/~sander/ res/henry.html, 1999
  22. Weinstein-Loyd, J.; Schwarz, S. E. Environ. Sci. Technolo. 1991, 25, 791-800 https://doi.org/10.1021/es00016a027
  23. Tatsuma, T.; Tachibana, S.-I.; Fujishima, A. J. Phys. Chem. B 2001, 105, 6987-6992 https://doi.org/10.1021/jp011108j

Cited by

  1. · Determination by Using Terephthalate in the Aqueous Solution vol.17, pp.4, 2012, https://doi.org/10.4491/eer.2012.17.4.205
  2. Reusable Photocatalysts for Dye Degradation vol.2013, pp.1687-529X, 2013, https://doi.org/10.1155/2013/752605
  3. –OOH species in determining reactivity vol.50, pp.82, 2014, https://doi.org/10.1039/C4CC03886J
  4. The suitability of Ce3+-modified ZnO photocatalyst for the mineralization of monochlorophenol isomers in sunlight exposure vol.4, pp.90, 2009, https://doi.org/10.1039/c4ra07038k