DOI QR코드

DOI QR Code

Kinetics and Mechanism of Michael-type Reactions of Ethyl Propiolate with Alicyclic Secondary Amines in H2O and MeCN: Solvent Effect on Reactivity and Transition-State Structure

  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Baek, Hye-Won (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Published : 2009.12.20

Abstract

The amines studied in this study are less reactive toward ethyl propiolate (3) in MeCN than in H$_2$O although they are 7 to 9 pK$_a$ units more basic in the aprotic solvent. The reactivity of morpholine and deuterated morpholine toward 3 is found to be identical, indicating that proton transfer occurs after rate-determining step (RDS). The fact that kinetic isotope effect is absent excludes a stepwise mechanism in which proton transfer occurs in RDS as well as a concerted mechanism in which nucleophilic attack and proton transfer occur concertedly through a 4-membered cyclic transition state (TS). Thus, the reactions have been concluded to proceed through a stepwise mechanism in which proton transfer occurs after RDS. Brønsted-type plots are linear with small ${\beta}_{nuc}$ values, i.e., ${\beta}_{nuc}$ = 0.29 in H$_2$O and ${\beta}_{nuc}$ = 0.51 in MeCN, indicating that bond formation is not advanced significantly in RDS. The small ${\beta}_{nuc}$ value also supports the conclusion drawn from the study of kinetic isotope effect.

Keywords

References

  1. (a) Gharpure, S. J.; Reddy, S. R. B. Org. Lett. 2009, 11, 2519- 2522.(Please refer to the other references for details:no.22) https://doi.org/10.1021/ol900721q
  2. Campbell-Verduyn, L. S.; Mirfeizi, L.; Dierckx, R. A.; Elsinga, P. H.; Feringa, B. L. Chem. Commun. 2009, 2139-2141 https://doi.org/10.1039/b822994e
  3. (a) Downey, C. W.; Mahoney, B. D.; Lipari, V. R. J. Org. Chem. 2009, 74, 2904-2906.(Please refer to the other references for details:no.23) https://doi.org/10.1021/jo900102w
  4. (a) Isawa, H.; Kakehi, A.; Suga, H. Heterocycl. Commun. 2008, 14, 141-148.(Please refer to the other references for details:no.24-no.28)
  5. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992, and references cited therein
  6. (a) Truce, W. E.; Onken, D. W. J. Org. Chem. 1975, 40, 3200-3208.(Please refer to the other references for details:no.29-no.30) https://doi.org/10.1021/jo00910a008
  7. (a) Sun, X.; Sengupta, S.; Petersen, J. L.; Wang, H.; Lewis, J. P.; Shi, X. Org. Lett. 2007, 9, 4495-4498.(Please refer to the other references for details:no.31-no.33) https://doi.org/10.1021/ol702059x
  8. (a) Shen, Z.; Lu, X. Tetrahedron 2006, 62, 10896-10899.(Please refer to the other references for details:no.34-no.37) https://doi.org/10.1016/j.tet.2006.08.086
  9. Um, I. H.; Lee, J. S.; Yuk, S. M. J. Org. Chem. 1998, 63, 9152-9153 https://doi.org/10.1021/jo9816459
  10. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536 https://doi.org/10.1021/jo050624t
  11. Um, I. H.; Lee, E. J.; Min, J. S. Tetrahedron 2001, 57, 9585-9589 https://doi.org/10.1016/S0040-4020(01)00981-4
  12. (a) Jencks, W. P.; Regenstein, F. Handbook of Biochemisry. Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.: 1968; pp. J-204.(Please refer to the other references for details:no.38-no.41)
  13. (a) Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746.(Please refer to the other references for details:no.42-no.43) https://doi.org/10.1021/jo034637n
  14. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2004, 69, 3806-3810 https://doi.org/10.1021/jo034370s
  15. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p. 159
  16. (a) Jencks, W. P. Chem. Rev. 1985, 85, 511-527.(Please refer to the other references for details:no.44-no.45) https://doi.org/10.1021/cr00070a001
  17. (a) Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4869.(Please refer to the other references for details:no.46-no.48) https://doi.org/10.1016/j.tet.2006.03.013
  18. (a) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629.(Please refer to the other references for details:no.49-no.51) https://doi.org/10.1021/jo049845+
  19. (a) Um, I. H.; Chun, S. M.; Akhtar, K. Bull. Korean Chem. Soc. 2007, 28, 220-224.(Please refer to the other references for details:no.52-no.54) https://doi.org/10.5012/bkcs.2007.28.2.220
  20. (a) Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720.(Please refer to the other references for details:no.55-no.57) https://doi.org/10.1021/jo061308x
  21. (a) Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890-1895.(Please refer to the other references for details:no.58-no.59) https://doi.org/10.1021/ja00214a037
  22. (b) Turlington, M.; DeBerardinis, A. M.; Pu, L. Org. Lett. 2009, 11, 2441-2444. https://doi.org/10.1021/ol900667g
  23. (b) Cao, H.; Wang, X.; Jiang, H.; Zhu, Q.; Zhang, M.; Liu, H. Chem. Eur. J. 2008, 14, 11623-11633 https://doi.org/10.1002/chem.200801471
  24. (b) Gariani, R. A.; Dos Santos, A. A.; Comasseto, J. V. Syn. Commun. 2008, 38, 789-795. https://doi.org/10.1080/00397910701820897
  25. (c) Ishikawa, T.; Aikawa, T.; Watanabe, S.; Saito, S. Org. Lett. 2006, 8, 3881-3884. https://doi.org/10.1021/ol0616485
  26. (d) Vedejs, E.; Little, J. D.; Seaney, L. M. J. Org. Chem. 2004, 69, 788-1793.
  27. (e) Grossman, R. B.; Comesse, S.; Rasne, R. M.; Hattori, K.; Delong, M. N. J. Org. Chem. 2003, 68, 871-874. https://doi.org/10.1021/jo026425g
  28. (f) Lee, J. S.; Kim, K. J. Heterocycl. Chem. 2000, 37, 363-372 https://doi.org/10.1002/jhet.5570370222
  29. (b) Truce, W. E.; Heuring, D. L.; Wolf, G. C. J. Org. Chem. 1974, 39, 238-244. https://doi.org/10.1021/jo00916a027
  30. (c) Truce, W. E.; Tichenor, G. J. J. Org. Chem. 1972, 37, 2391-2396. https://doi.org/10.1021/jo00980a007
  31. (b) Sopbue Fondjo, E.; Doepp, D.; Henkel, G. Tetrahedron 2006, 62, 7121-7131. https://doi.org/10.1016/j.tet.2006.04.037
  32. (c) Crisp, G. T.; Millan, M. J. Tetrahedron 1998, 4, 637-648. https://doi.org/10.1016/S0040-4020(97)10323-4
  33. (d) Sinsky, M. S.; Bass, R. G. J. Heterocyclic Chem. 1984, 21, 759-768. https://doi.org/10.1002/jhet.5570210325
  34. (b) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059-4063. https://doi.org/10.1021/jo050121n
  35. (c) Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031-5041. https://doi.org/10.1021/jo9723063
  36. (d) Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709-713. https://doi.org/10.1021/jo00028a055
  37. (e) Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 1643-1644. https://doi.org/10.1039/C39900001643
  38. (b) Castro, E. A.; Santos, J. G.; Tellez, J.; Umana, M. I. J. Org. Chem. 1997, 62, 6568-6574. https://doi.org/10.1021/jo970624w
  39. (c) Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316. https://doi.org/10.1021/jo015691b
  40. (d) Hwang, S. J.; Park, Y. M.; Um, I. H. Bull. Korean Chem. Soc. 2008, 29, 1911-1914. https://doi.org/10.5012/bkcs.2008.29.10.1911
  41. (e) Mc-Caw, C. J. A.; Spillane, W. J. J. Phys. Org. Chem. 2006, 18, 512- 517. https://doi.org/10.1002/poc.1050
  42. (b) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  43. (c) Um, I. H.; Min, S. W.; Dust, J. M. J. Org. Chem. 2007, 72, 8797-8803. https://doi.org/10.1021/jo701549h
  44. (b) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  45. (c) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U. K., 1997; Chapter 7.
  46. (b) Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562. https://doi.org/10.1016/j.tet.2005.12.044
  47. (c) Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  48. (d) Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760. https://doi.org/10.1021/jo048127k
  49. (b) Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. https://doi.org/10.1039/b500251f
  50. (c) Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285-9288. https://doi.org/10.1021/jo0484676
  51. (d) Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153. https://doi.org/10.1021/jo049845+
  52. (b) Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. https://doi.org/10.1021/jo0705061
  53. (c) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  54. (d) Um, I. H.; Kim, E. J; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  55. (b) Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  56. (c) Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008, 14, 7324-7330. https://doi.org/10.1002/chem.200800553
  57. (d) Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  58. (b) Douglas, K. T.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1976, 515-521. https://doi.org/10.1039/p29760000515
  59. (c) Younker, J. M.; Hengge, A. C. J. Org. Chem. 2004, 69, 9043-9048. https://doi.org/10.1021/jo0488309

Cited by

  1. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  2. -Methoxy Group on Reactivity and Reaction Mechanism vol.76, pp.18, 2011, https://doi.org/10.1021/jo201387h
  3. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547
  4. Solvent Effect on Kinetics and Mechanism of the Phospha-Michael Reaction of Tertiary Phosphines with Unsaturated Carboxylic Acids vol.25, pp.3, 2014, https://doi.org/10.1002/hc.21161
  5. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1622-5
  6. Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure vol.31, pp.5, 2009, https://doi.org/10.5012/bkcs.2010.31.5.1199
  7. Pyridinolyses of 2,4-Dinitrophenyl Phenyl Carbonate and 2,4-Dinitrophenyl Benzoate: Effect of Nonleaving Group on Reactivity and Mechanism vol.31, pp.7, 2009, https://doi.org/10.5012/bkcs.2010.31.7.1915
  8. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Diphenylphosphinothioates: Steric Hindrance versus Nucleofugality in Nucleophilic Substitution Reactions vol.32, pp.6, 2009, https://doi.org/10.5012/bkcs.2011.32.6.2117
  9. Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism vol.33, pp.8, 2009, https://doi.org/10.5012/bkcs.2012.33.8.2719
  10. Electrical and optical studies on tungsten-substituted bismuth molybdates vol.111, pp.7, 2009, https://doi.org/10.3139/146.111921