DOI QR코드

DOI QR Code

Novel Cationic 2-Phenylpyridine-based Iridium(III) Complexes Bearing an Ancillary Phosphine Ligand: Synthesis, Photophysics and Crystal Structure

  • Ma, Ai-Feng (Department of Chemistry, Pusan National University) ;
  • Seo, Hoe-Joo (Department of Chemistry, Pusan National University) ;
  • Jin, Sung-Ho (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Yoon, Ung-Chan (Department of Chemistry, Pusan National University) ;
  • Hyun, Myeong-Ho (Department of Chemistry, Pusan National University) ;
  • Kang, Sung-Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Young-Inn (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University)
  • Published : 2009.11.20

Abstract

Three novel phosphorescent 2-phenylpyridine-based iridium(III) complexes, $[(ppy)_2Ir(P\^{}N)]PF6\;(1),\;[(dfppy)_2Ir(P\^{}N)]PF_6$ (2), and $[(dfmppy)_2 Ir(P\^{}N)]PF6$ (3), where $P\^{}N$ = 2-[(diphenylphosphino)methyl]pyridine (dppmp), were synthesized and characterized. The absorption, photoluminescence, cyclic voltammetry and thermal stability of the complexes were investigated. The complexes showed bright blue luminescences at wavelengths of 448 $\sim$ 500 nm at room temperature in $CHCl_3$ and revealed that the $\pi$-acceptor ability of the phosphorous atom in the ancillary dppmp ligand plays an important role in tuning emission color resulting in a blue-shift emission. The single crystal structure of $[(dfmppy))_2Ir(P\^N)]PF_6$ was determined using X-ray crystallography. The iridium metal center adopts a distorted octahedral structure coordinated to two dfmppy and one dppmp ligand, showing cis C-C and trans N-N chelate dispositions. There is a $\pi-\pi$ overlap between π electrons delocalized in the difluorophenyl rings.

Keywords

References

  1. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thomson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4 https://doi.org/10.1063/1.124258
  2. Tsuboyama, A.; Miura, S.; Takaguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971. https://doi.org/10.1021/ja034732d
  3. Gong, X.; Ostrowski, J. C.; Bazaw, G. C.; Moses, D.; Heeger, A. J. Appl. Phys. Lett. 2002, 81, 3711. https://doi.org/10.1063/1.2927357
  4. Ionkin, A. S.; Wang, Y.; Marshall, W. J.; Pertrov, V. A. J. Org. Chem. 2007, 692, 4809. https://doi.org/10.1002/adfm.200800697
  5. Park, G. Y.; Ha, Y. Syn. Metals 2008, 158, 120. https://doi.org/10.1063/1.1306639
  6. Xiao, G.; Lei, P.; Chi, H.; Lu, Y.; Dong, Y.; Hu, Z.; Zhang, Z.; Li, X. Syn. Metals. 2009, 159, 705 https://doi.org/10.1021/am800122n
  7. Lee, S. J.; Park, J. S.; Song, M.; Yoon, K. J.; Kim, Y.-I.; Jin, S. H.; Seo, H. J. Appl. Phys. Lett. 2008, 92, 193312. https://doi.org/10.1021/cr00039a007
  8. Bolink, H. J.; Coronado, E.; Santamaria, S. G.; Sessolo, M.; Evans, N.; Klein, C.; Baranoff, E.; Kalyanasundaram, K.; Graetzek, M.; Nazeeruddin, M. K. Chem. 2007, 3276.
  9. Huang, W. S.; Lin, J. T.; Lin, H. C. Organic Electronics 2008, 9, 557. https://doi.org/10.1016/j.orgel.2008.03.001
  10. Zhou, G.; Ho, C. L.; Wong, W. Y.; Ma, Q. W.; Wang, L.; Lin, Z.; Marder, T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499 https://doi.org/10.1107/S0108767394005726
  11. Lee, S. J.; Park, J. S.; Yoon, K. J.; Kim, Y.-I.; Jin, S. H.; Kang, S. K.; Gal, Y. S.; Kang, S. W.; Lee, J. Y.; Kang, J. W.; Lee, S. H.; Park, H. D.; Kim, J. J. Adv. Funct. Mater. 2008, 18, 3922. https://doi.org/10.1002/adfm.200800697
  12. Lo, S. C.; Richards, G. J.; Markham, J. P. J.; Namdas, E. B.; Sharma, S.; Burn, P. L.; Samuel, I. D. W. Adv. Funct. Mater. 2005, 15, 1451. https://doi.org/10.1246/bcsj.47.767
  13. Takizawa, S. Y.; Echizen, H.; Nishida, J.; Tsuzuki, T.; Tokito, S.; Yamashita, T. Chem. Lett. 2006, 35, 748. https://doi.org/10.1021/ic0008969
  14. Yang, C. H.; Cheng, Y. M.; Chi, Y.; Hsu, C. H.; Fang, F. C.; Wong, K. T.; Chou, P. T.; Chang, C. H.; Tsai, M. H.; Wu, C. C. Angew. Chem. Int. Ed. 2007, 46, 2418 https://doi.org/10.1002/anie.200604733
  15. Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904 https://doi.org/10.1021/ja034537z
  16. Chiu, Y. C.; Chi, Y.; Hang, J. Y.; Yu, Y. C.; Chung, M. W.; Lee, G. H.; Chou, P. T.; Chen, C. C.; Wu, C. C.; Hsieh, H. Y. ACS Appl. Mater. Interfaces 2009, 1, 433 https://doi.org/10.1021/om061101u
  17. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457 https://doi.org/10.1021/ja00170a016
  18. SMART, V 5.05 Software for the CCD Detector System; Bruker Analytical X-ray Systems, Inc.: Madison, WI 1998 https://doi.org/10.1021/ja0427101
  19. SAINTPLUS, V 5.00 Software for the CCD Detector System; Bruker Analytical X-ray Systems, Inc.: Madison, WI 1998
  20. SADABS. Program for absorption correction using SMART CCD based on the method of: Blessing, R. H. Acta. Crystallogr. A 1995, 51. 33 https://doi.org/10.1021/ja003693s
  21. Sheldrick, G. M. SHELXTL, V 6.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI 1997 https://doi.org/10.1063/1.1400076
  22. Nonoyama, M. Bull. Chem. Soc. Jpn. 1974, 47, 767 https://doi.org/10.1016/j.ica.2008.09.054
  23. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704 https://doi.org/10.1021/jp035664k
  24. Orselli, E.; Kotlas, C. S.; Konradsson, A. E.; Coppo, P.; Frhlich, R.; Cola, L. D.; Dijken, A.; Bchel, M.; Brner, A. Inorg. Chem. 2007, 46, 11082. https://doi.org/10.1002/adma.19950070608
  25. Mak, C. S. K.; Hayer, A.; Pascu, S. I.; Watkins, S. E.; Holmer, A. B.; Kohler, A.; Friend, R. H. Chem. Commun. 2005, 37, 4708 https://doi.org/10.1002/chem.200600618
  26. Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377 https://doi.org/10.1021/ja034537z
  27. Wu, L. L.; Yang, C. H.; Sun, I. W.; Chu, S. Y.; Kao, P. C.; Huang, H. H. Orgnometallics 2007, 26, 2017 https://doi.org/10.1021/om061101u
  28. Hunter, C. A.; Sanders, K. M. J. Am. Chem. Soc. 1990, 112, 5525 https://doi.org/10.1021/ja00170a016
  29. Goldsmith, J. I.; Hudson, W. R.; Lowry, M. S.; Anderson, T. H.; Bernhard, S. J. Am. Chem. Soc. 2005, 127, 7502. https://doi.org/10.1021/ja0427101
  30. Joshi, H. S.; Jamshidi, R.; Tor, Y. Angew. Chem. Int. Ed. 1999, 38, 2721. https://doi.org/10.1002/(SICI)1521-3773(19990917)38:18<2721::AID-ANIE2721>3.0.CO;2-5
  31. Fang, K. H.; Sun, I. W. Inorganic Chimica Acta 2006, 359, 441. https://doi.org/10.1016/j.ica.2005.10.003
  32. Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Macromolecles 1999, 32, 7422 https://doi.org/10.1021/ma990960+
  33. Tavasli, M.; Bettington, S.; Pezepichka, I. F.; Batsanov, A. S.; Bryce, M. R.; Rothe, C.; Monkman, A. P. Eur. J. Inorg. Chem. 2007, 4808
  34. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzag, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304 https://doi.org/10.1021/ja003693s
  35. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 2082 https://doi.org/10.1063/1.1400076
  36. Xu, M.; Zhou, R.; Wang, G.; Yu, J. Inorg. Chemi. Acta 2009, 362, 2183 https://doi.org/10.1016/j.ica.2008.09.054
  37. Namdas, E. B.; Ruseckas, A.; Samuel, I. D. W.; Lo, S. C.; Burn, P. L. J. Phys. Chem. B 2004, 108, 1570 https://doi.org/10.1021/jp035664k
  38. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Proseh, M.; Daub, J. Adv. Mater. 1995, 7, 551 https://doi.org/10.1002/adma.19950070608
  39. Lowry, M. S.; Bernhard, S. Chem. Eur. J. 2006, 12, 7970 https://doi.org/10.1002/chem.200600618

Cited by

  1. Red-Orange Emissive Cyclometalated Neutral Iridium(III) Complexes and Hydridoiridium(III) Complex Based on 2-Phenylquinoxaline : Structure, Photophysics and Reactivity of Acetylacetone Towards Cyclometalated Iridium Dimer vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4321
  2. Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes vol.51, pp.4, 2012, https://doi.org/10.1021/ic202297h
  3. ) complexes bearing bisphosphine ligands vol.3, pp.2, 2016, https://doi.org/10.1039/C5QI00177C
  4. Synthesis, Structure, and OLEDs Application of Cyclometalated Iridium(III) Complexes Utilizing Substituted 2-Phenylpyridine vol.38, pp.7, 2017, https://doi.org/10.1002/bkcs.11173
  5. ) complexes featuring pyridylpyrimidine ligands and their use in sky-blue electroluminescent devices vol.5, pp.37, 2017, https://doi.org/10.1039/C7TC03110F
  6. Synthesis and photophysical properties of bis(phenylpyridine) iridium(III) dicyanide complexes pp.1433-075X, 2019, https://doi.org/10.1080/14328917.2017.1397940
  7. Synthesis and Crystal Structures of Macrocycles Containing 2-Imino-5-mercapto-3H-1,3,4-thiadiazolines vol.31, pp.5, 2009, https://doi.org/10.5012/bkcs.2010.31.5.1393
  8. Tuning Photophysical and Electrochemical Properties of Heteroleptic Cationic Iridium(III) Complexes Containing Substituted 2-Phenylquinoxaline and Biimidazole vol.31, pp.8, 2009, https://doi.org/10.5012/bkcs.2010.31.8.2309
  9. Blue Emitting Cationic Iridium Complexes Containing Two Substituted 2-Phenylpyridine and One 2,2'-Biimidazole for Solution-Processed Organic Light-Emitting Diodes (OLEDs) vol.33, pp.11, 2012, https://doi.org/10.5012/bkcs.2012.33.11.3645
  10. Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.167
  11. Photophysical Properties of Highly Efficient Blue-Green Emitting Cationic Iridium (III) Complexes Containing Two 2-Phenylbenzothiazole Ligands and One Diphosphine Ligand vol.35, pp.11, 2009, https://doi.org/10.5012/bkcs.2014.35.11.3199
  12. o-Carboranyl–Phosphine as a New Class of Strong-Field Ancillary Ligand in Cyclometalated Iridium(III) Complexes: Toward Blue Phosphorescence vol.34, pp.14, 2009, https://doi.org/10.1021/acs.organomet.5b00438
  13. Exploration of the Structural and Photophysical Characteristics of Mono- and Binuclear Ir(III) Cyclometalated Complexes for Optoelectronic Applications vol.12, pp.17, 2009, https://doi.org/10.3390/ma12172734
  14. Synthesis and reactivity studies of a [Cp∗Rh] complex supported by a methylene-bridged hybrid phosphine-imine ligand vol.921, pp.None, 2020, https://doi.org/10.1016/j.jorganchem.2020.121294
  15. Synthesis, crystal structure and Hirshfeld surface analysis of [bis(diphenylphosphanyl)methane-κP]chloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III) vol.77, pp.3, 2009, https://doi.org/10.1107/s2056989021000955