DOI QR코드

DOI QR Code

Comparative Study of Tetrahydrothiophene and Thiophene Self Assembled Monolayers on Au(111): Structure and Molecular Orientation

  • Ito, Eisuke (Flucto-order Functions Asian Collaboration Team) ;
  • Hara, Masahiko (Flucto-order Functions Asian Collaboration Team) ;
  • Kanai, Kaname (Department of Electronic Chemistry, Tokyo Institute of Technology) ;
  • Ouchi, Yukio (Department of Electronic Chemistry, Tokyo Institute of Technology) ;
  • Seki, Kazuhiko (Department of Electronic Chemistry, Tokyo Institute of Technology) ;
  • Noh, Jaegeun (Department of Electronic Chemistry, Tokyo Institute of Technology)
  • Published : 2009.08.20

Abstract

Surface structure and molecular orientation of self-assembled monolayers (SAMs) formed by the spontaneous adsorption of tetrahydrothiophene (THT) and thiophene (TP) on Au(111) were investigated by means of scanning tunneling microscopy (STM) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STM imaging revealed that THT SAMs have a commensurate (3 ${\times}\;2\sqrt[]{3}$) structure containing structural defects in ordered domains, whereas TP SAMs are composed of randomly adsorbed domains and paired molecular row domains that can be described as an incommensurate packing structure. The NEXAFS spectroscopy study showed that the average tilt angle of the aliphatic THT ring and $\pi$-conjugated TP ring in the SAMs were calculated to be about $30^o\;and\;40^o$, respectively, from the surface normal. It was also observed that the $\pi$* transition peak in the NEXAFS spectrum of the TP SAMs is very weak, suggesting that a strong interaction between $\pi$-electrons and the Au surface arises during the self-assembly of TP molecules. In this study, we have clearly demonstrated that the surface structure and adsorption orientation of organic SAMs on Au(111) are strongly influenced by whether the cyclic ring is saturated or unsaturated.

Keywords

References

  1. Ulman, A. Chem. Rev. 1996, 96, 1533 https://doi.org/10.1021/cr9502357
  2. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103 https://doi.org/10.1021/cr0300789
  3. Choi, Y.; Jeong, Y.; Chung, H.; Ito, E.; Hara, M.; Noh, J. Langmuir 2008, 24, 91 https://doi.org/10.1021/la701302g
  4. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793 https://doi.org/10.1021/jp055538b
  5. Noh, J.; Hara, M. Langmuir 2002, 19, 1953
  6. Kato, H. S.; Noh, J.; Hara, M.; Kawai, M. J. Phys. Chem. B 2002, 106, 9655 https://doi.org/10.1021/jp020968c
  7. Ishida, T.; Hara, M.; Kojima, I.; Tsuneda, S.; Nishida, N.; Sasabe, H.; Knoll, W. Langmuir 1998, 14, 2092 https://doi.org/10.1021/la971104z
  8. Poirier, G. E.; Fitts, W. P.; White, J. M. Langmuir 2001, 17, 1176 https://doi.org/10.1021/la0012788
  9. Hayashi, T.; Morikawa, Y.; Nozoye, H. J. Chem. Phys. 2001, 114, 7615
  10. Tao, Y.; Wu, C.; Eu, J.; Lin, W. Langmuir 1997, 13, 4018 https://doi.org/10.1021/la9700984
  11. Jeong, Y.; Han, J.: Lee, C.; Noh, J. Bull. Korean Chem. Soc. 2008, 29, 1105 https://doi.org/10.5012/bkcs.2008.29.6.1105
  12. Dishner, M. H.; Taborek, P.; Hemminger, J. C.; Feher, F. J. Langmuir 1998, 14, 6676 https://doi.org/10.1021/la980274o
  13. Noh, J.; Ito, E.; Nakajima, K.: Kim, J.; Lee, H.; Hara, M. J. Phys. Chem. B 2002, 106, 7139 https://doi.org/10.1021/jp020482w
  14. Ito, E.; Noh, J.; Hara, M. Jpn. J. Appl. Phys. 2003, 42, L852 https://doi.org/10.1143/JJAP.42.L852
  15. Sako, E. O.; Kondoh, H.; Nakai, I.; Nambu, A.; Nakamura, T.; Ohta, T. Chem. Phys. Lett. 2005, 413, 267 https://doi.org/10.1016/j.cplett.2005.07.086
  16. Liu, G.; Rodriguez, J. A.; Dvorak, J.; Hrbek, J.; Jirsak, T. Surf. Sci. 2002, 505, 295 https://doi.org/10.1016/S0039-6028(02)01377-8
  17. Nambu, A.; Kondoh, H.; Nakai, I.; Amemiya, K.; Ohta, T. Surf. Sci. 2003, 530, 101 https://doi.org/10.1016/S0039-6028(03)00383-2
  18. Hitchcock, A. P.; Horsley, J. A.; St$\ddot{o}$hr, J. J. Chem. Phys. 1986, 85, 4835
  19. Lang, J. F.; Masel, R. I. Surf. Sci. 1987, 183, 44 https://doi.org/10.1016/S0039-6028(87)80335-7
  20. Noh, J.; Jeong, Y.; Ito, E.; Hara, M. J. Phys. Chem. C 2007, 111, 2691 https://doi.org/10.1021/jp067093c
  21. Ishida, T.; Hara, M.; Kojima, I.; Tsuneda, S.; Nishida, N.; Sasabe, H.; Knoll, W. Langmuir 1998, 14, 2092 https://doi.org/10.1021/la971104z
  22. Wirde, M.; Gelius, U.; Nyholm, L. Langmuir 1999, 15, 6370 https://doi.org/10.1021/la9903245
  23. Zharnikov, M.; Frey, S.; Rong, H.; Yang, Y.-J.; Heister, K.; Buck, M.; Grunze, M. Phys. Chem. Chem. Phys. 2000, 2, 3359 https://doi.org/10.1039/b004232n
  24. Kondoh, H.; Saito, N.; Matsui, F.; Yokoyama, T.; Ohta, T.; Kuroda, H. J. Phys. Chem. B 2001, 105, 12870 https://doi.org/10.1021/jp015517r
  25. Yan, C.; Zharnikov, M.; $G\ddot{o}lzh\ddot{a}user$, A.; Grunze, M. Lagnmuir 2000, 16, 6208
  26. Efimenko, K.; Novik, B.; Carbonell, R. G.; DeSimone, J. M.; Genzer, J. Langmuir 2002, 18, 6170 https://doi.org/10.1021/la011813j
  27. Genzer, J.; Efimenko, K.; Fischer, D. A. Langmuir 2002, 18, 9307 https://doi.org/10.1021/la025921x
  28. Matsuie, N.; Ouchi, Y.; Oji, H.; Ito, E.; Ishii, H.; Seki, K.; Hasegawa, M.; Zharnikov, M. Jpn. J. Appl. Phys. 2003, 42, L67 https://doi.org/10.1143/JJAP.42.L67
  29. Okajima, T.; Teramoto, K.; Mitsumoto, R.; Oji, H.; Yamamoto, Y.; Mori, I.; Ishii, H.; Ouchi, Y.; Seki, K. J. Phys. Chem. A 1998, 102, 7093 https://doi.org/10.1021/jp981164t
  30. Noh, J.; Kato, H. S.; Kawai, K.; Hara, M. J. Phys. Chem. B 2002, 106, 13268 https://doi.org/10.1021/jp021742c
  31. Su, G.-J.; Zhang, H.-M.; Wan, L.-J.; Bai, C.-L. Surf. Sci. Lett. 2003, 531, L363 https://doi.org/10.1016/S0039-6028(03)00542-9
  32. St$\ddot{o}$hr, J. NEXAFS Spectroscopy; Springer-Verlag: Berlin, 1992
  33. Okajima, T.; Narioka, S.; Tanimura, S.; Hamano, K.; Kurata, T.; Uehara, Y.; Araki, T.; Ishii, H.; Ouchi, Y.; Seki, K.; Ogama, T.; Koezuka, H. J. Electron Spectrosc. Relat. Phenom. 1996, 78, 379 https://doi.org/10.1016/S0368-2048(96)80103-4
  34. V$\ddot{a}$terlein, C.; Schmelzer, M.; Taborski, J.; Krause, T.; Viczian, F.; B$\ddot{a}$Bler, M.; Fink, R.; Umbach, E.; Wurth, W. Surf. Sci. 2000, 452, 20 https://doi.org/10.1016/S0039-6028(00)00292-2

Cited by

  1. Efficient Transport of Gold Atoms with a Scanning Tunneling Microscopy Tip and a Linker Molecule vol.27, pp.15, 2011, https://doi.org/10.1021/la202134a
  2. Selenium, Benzeneselenol, and Selenophene Interaction with Cu(100) vol.120, pp.38, 2016, https://doi.org/10.1021/acs.jpcc.6b06217
  3. Thiophene Derivatives on Gold and Molecular Dissociation Processes pp.1932-7455, 2017, https://doi.org/10.1021/acs.jpcc.7b08006
  4. Coexistence of Closely Packed c(4 × 2) and Striped Phases in Self-Assembled Monolayers of Decylthiocyanates on Au(111) vol.31, pp.4, 2010, https://doi.org/10.5012/bkcs.2010.31.04.901
  5. Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation vol.32, pp.5, 2009, https://doi.org/10.5012/bkcs.2011.32.5.1679
  6. Formation of a Highly‐ordered Thiophene Monolayer on Au(111) via Vapor Phase Deposition vol.40, pp.7, 2009, https://doi.org/10.1002/bkcs.11744
  7. Synthesis, characterization and surface enhanced Raman spectroscopy study of a new family of different substituted cruciform molecular systems deposited on gold nanoparticles vol.52, pp.5, 2009, https://doi.org/10.1002/jrs.6082