DOI QR코드

DOI QR Code

Uptake Effects of Two Electrons for Relative Stability and Atomic Structures of Carbon Cluster Isomers of C20: ab initio Methods

  • Lee, Wang-Ro (Faculty of Liberal Education, Chonbuk National University) ;
  • Lee, Chang-Hoon (Department of Chemistry, North Carolina State University) ;
  • Kang, Jin-Hee (Department of Chemistry, Nanoscale Sciences and Technology Institute, and BK21 Project, Wonkwang University) ;
  • Park, Sung-Soo (CAE Group, Central R & D Institute, Samsung Electro-Mechanics Co. Ltd.) ;
  • Hwang, Yong-Gyoo (Department of Microelectronics & Display Technology, Wonkwang University) ;
  • Lee, Kee-Hag (Department of Chemistry, Nanoscale Sciences and Technology Institute, and BK21 Project, Wonkwang University)
  • Published : 2009.02.20

Abstract

This study examined the effect of the uptake of one and two electrons on the atomic structure of three isomers of $C_{20}$ clusters, namely the ring, bowl (corannulene like), and cage (the smallest fullerene). Geometry optimizations were performed using the hybrid density functional (B3LYP) methods for neutral, singly and doubly charged $C_{20},\;{C_{20}}^-,and\;{C_{20}}^{2-}$. These results show that the symmetry of the lowest energies for ring and bowl isomers were not changed, whereas the increasing order of energy for the cage (the smallest fullerene) isomers was changed from $D_{2h}\;<\;C_{2h}\;{\leq}\;C_2\;of\;C_{20}\;through\;Ci\;<\;C_{2h}\;<\;C_2\;<\;D_{2h}\;of\;{C_{20}}^-\;to\;Ci\;<\;C_2\;<\;D_{2h}\;<\;C_{2h}\;of\;{C_{20}}^{2-}$. The reduced symmetry isomers of the cage have comparative energy and the ground state symmetry of the neutral and single and double charged $C_{20}$ decreased with increasing number of electrons taken up in the point of energetics. Interestingly, the difference in energy between the ground state and the next higher energy state of ${C_{20}}^{2-}$ was 3.5kcal/mol, which is the largest energy gap of the neutral, single anion and double anion of the cage isomers examined.

Keywords

References

  1. Kroto, H. W.; Allef, A. W.; Blum, S. P. Chem. Rev. 1991, 91, 1213. https://doi.org/10.1021/cr00006a005
  2. Kroto, H. W.; Heath, J. R.; Òbrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162. https://doi.org/10.1038/318162a0
  3. Curl, R. F.; Smalley, R. E. Science 1988, 242, 1017. https://doi.org/10.1126/science.242.4881.1017
  4. Klein, P. J.; Schmalz, T. G.; Hite, G. F.; Seitz, W. A. Nature 1986, 323, 703. https://doi.org/10.1038/323703a0
  5. Temme, F. P. Chem. Phys. Lett. 1992, 200, 534. https://doi.org/10.1016/0009-2614(92)80087-R
  6. Chiba, Y. A.; Nakagawa, T.; Matusui, Y.; Suzuki, S.; Shiromaru, H.; Yamauchi, K.; Nishiyama, K.; Kainosho, M.; Hoshi, H.;Maruyama, Y.; Mitani, T. Chem. Lett. 1991, 7, 98.
  7. Blau, W.; Byren, H.; Gardin, D.; Dennis, T.; Hare, J.; Kroto, H.;Taylor, R. Phys. Rev. Lett. 1991, 67, 1423. https://doi.org/10.1103/PhysRevLett.67.1423
  8. Henuri, F.; Callaghan, J.; Stiel, H.; Blau, W.; Cardin, D. Chem. Phys. Lett. 1992, 199, 144. https://doi.org/10.1016/0009-2614(92)80061-F
  9. Helden, A. Von.; Hsu, M. T.; Gotts, N. G.; Kemper, P. K.;Bowers, M. T. Chem. Lett. 1993, 204, 15. https://doi.org/10.1016/0009-2614(93)85599-J
  10. Handschuh, H.; Gantetor, G.; Kesslet, B.; Bechthold, P. S.;Ebhardt, W. Phys. Rev. Lett. 1995, 74, 1095. https://doi.org/10.1103/PhysRevLett.74.1095
  11. Prinzbach, H.; Weiler, A.; Landenberer, P.; Wahl, F.; Wörth, J.;Scott, L. T.; Gelmont, M.; Olevano, D.; Issendorff, B. Von. Nature 2000, 407, 60. https://doi.org/10.1038/35024037
  12. Parasuk, V.; Almlöf, J. Chem. Phys. Lett. 1991, 184, 187. https://doi.org/10.1016/0009-2614(91)87185-E
  13. Galli, G.; Gygi, F.; Golaz, J. C. Phys. Rev. B 1998, 57, 1860. https://doi.org/10.1103/PhysRevB.57.1860
  14. Saito, M.; Miyamoto, Y. Phys. Rev. Lett. 2001, 87, 035503-1. https://doi.org/10.1103/PhysRevLett.87.035503
  15. Raghavachari, K.; Strout, D. L.; Odom, G. K.; Scuseria, G. E.;Pople, J. A.; Johnson, B. G.; Gill, D. W. Chem. Phys. Lett. 1993, 214, 357. https://doi.org/10.1016/0009-2614(93)85650-D
  16. Taylor, P. R.; Bylaska, E.; Weare, J. H.; Kawai, R. Chem. Phys. Lett. 1995, 235, 558. https://doi.org/10.1016/0009-2614(95)00161-V
  17. Martin, J. M. L.; El-Yazal, J.; François, J.-P. Chem. Phys. Lett. 1996, 248, 345. https://doi.org/10.1016/0009-2614(95)01334-2
  18. Sokolova, S.; Lüchow, A.; Anderson, J. B. Chem. Phys. Lett. 2000, 323, 229. https://doi.org/10.1016/S0009-2614(00)00554-6
  19. Wang, Z.; Day, P.; Pachtez, R. Chem. Phys. Lett. 1996, 248, 121. https://doi.org/10.1016/0009-2614(95)01299-0
  20. Zhang, C.; Sun, W.; Cao, Z. J. Chem. Phys. 2007, 126, 144306.
  21. An, W.; Gao, Y.; Bulusu, S.; Zeng, X. C. J. Chem. Phys. 2005, 122, 204109. https://doi.org/10.1063/1.1903946
  22. Moran, D.; Simmonett, A. C.; Leach III, F. E.; Allen, W. D.;Schleyer, P. v. R.; Schaefer III, H. F. J. Am. Chem. Soc. 2006, 128, 9342. https://doi.org/10.1021/ja0630285
  23. Shi, Q.; Kais, S. Mol. Phys. 2002, 100, 475. https://doi.org/10.1080/00268970110086327
  24. Beck, A. D. J. Chem. Phys. 1993, 98, 5648. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. A 1988, 37, 785.
  25. Stephen, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. https://doi.org/10.1021/j100096a001
  26. Herteing, R. H.; Koch, W. Chem, Phys. Lett. 1997, 268, 345. https://doi.org/10.1016/S0009-2614(97)00207-8
  27. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.;Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.;Honda, Y.;Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, B. 04; Gaussian, Inc.: Pitttsburgh, PA, 2003.

Cited by

  1. Interaction with a BN Nano-Cage vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3338
  2. Isomer Clusters: Tight-binding Molecular Dynamics Simulation vol.37, pp.6, 2016, https://doi.org/10.1002/bkcs.10801
  3. Electronic structures of solids made of C20 clusters vol.7, pp.2, 2017, https://doi.org/10.1063/1.4976331
  4. Structure and Energetics of (C60)22+ Conformers: Quantum Chemical Studies vol.31, pp.2, 2009, https://doi.org/10.5012/bkcs.2010.31.02.457
  5. Full Geometry Optimizations of Bond-Stretch Isomers of C202+ Fullerene Dication by the Hybrid Density Functional B3LYP Methods vol.32, pp.1, 2011, https://doi.org/10.5012/bkcs.2011.32.1.277