DOI QR코드

DOI QR Code

A Kinetic Study on Solvolysis of Diphenyl Thiophosphorochloridate

  • Koh, Han-Joong (Department of Science Education, Jeonju National University of Education) ;
  • Kang, Suk-Jin (Department of Science Education, Jeonju National University of Education) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • Published : 2009.02.20

Abstract

Rates of solvolyses of diphenyl thiophosphorochloridate ($(PhO)_2$PSCl, 1) in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone and 2,2,2-trifluoroethanol (TFE) are reported. For four representative solvents, studies were made at several temperatures and activation parameters were determined. The 30 solvents gave a reasonably precise extended Grunwald-Winstein plot, correlation coefficient (R) of 0.989. The sensitivity values (l = 1.29 and m = 0.64) of diphenyl thiophosphorochloridate ($(PhO)_2$PSCl, 1) were similar to those obtained for diphenyl phosphorochloridate ($(PhO)_2$POCl, 2), diphenylphosphinyl chloride ($Ph_2$POCl, 3) and diphenylthiophosphinyl chloride ($Ph_2$PSCl, 4). As with the previously studied of 3~4 solvolyses, an $S_N$ pathway is proposed for the solvolyses of diphenyl thiophosphorochloridate (1). The activation parameters, ${\Delta}H^{\neq}\;(=11.6{\sim}13.9\;kcal{\cdot}mol^{-1})\;and\;{\Delta}S^{\neq}\; (=\;-32.1\;{\sim}\;-42.7\;cal{\cdot}mol^{-1}{\cdot}K^{-1})$, were determined, and they were in line with values expected for an $S_N$2 reaction. The large kinetic solvent isotope effects (KSIE, 2.44 in MeOH/MeOD and 3.46 in $H_2O/D_2$O) are also well explained by the proposed $S_N$2 mechanism.

Keywords

References

  1. Page, M.; Williams, A. Organic and Bio-Organic Mechanisms; Longman: Harlow, 1997; Chapters 7-8
  2. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 6
  3. Hudson, R. F. Structure and Mechanism in Organophosphorus Chemistry; Academic Press: New York, 1965
  4. Admiral, S. J.; Schneider, B.; Meyer, P.; Janin, J.; Veron, M.; Deville-Bonne, D.; Herschlag, D. Biochemistry 1999, 38, 4701 https://doi.org/10.1021/bi9827565
  5. Mol, C. D.; Izumi, T.; Mitra, S.; Tainer, J. A. Nature 2000, 403, 451 https://doi.org/10.1038/35000249
  6. Hosfield, D. J.; Guan, Y.; Haas, B. J.; Cunningham, R. P.; Tainer, J. A. Cell 1999, 98, 397 https://doi.org/10.1016/S0092-8674(00)81968-6
  7. Mol, C. D.; Hosfield, D. J.; Tainer, J. A. Mutat. Res. 2000, 460, 211 https://doi.org/10.1016/S0921-8777(00)00028-8
  8. Chapados, B. R.; Chai, Q.; Hosfield, D. J.; Qiu, J.; Shen, B.; Tainer, J. A. Mol. Biol. 2001, 307, 541 https://doi.org/10.1006/jmbi.2001.4494
  9. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591 https://doi.org/10.1021/ja00336a046
  10. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597 https://doi.org/10.1021/ja00336a047
  11. Kirby, A. J.; Varroglis, A. G. J. Am. Chem. Soc. 1967, 89, 415 https://doi.org/10.1021/ja00978a044
  12. Friedman, J. M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110, 1268 https://doi.org/10.1021/ja00212a040
  13. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890 https://doi.org/10.1021/ja00214a037
  14. Ba-Saif, S. A.; Waring, M. A.; Williams, A. J. Am. Chem. Soc. 1990, 112, 8115 https://doi.org/10.1021/ja00178a040
  15. Hengge, A. C.; Edens, W. A.; Elsing, H. J. Am. Chem. Soc. 1994, 116, 5045 https://doi.org/10.1021/ja00091a003
  16. Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63, 6680 https://doi.org/10.1021/jo981160k
  17. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765
  18. Hoque, Md. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B.-S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797 https://doi.org/10.5012/bkcs.2007.28.10.1797
  19. Hoque, Md. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936 https://doi.org/10.5012/bkcs.2007.28.6.936
  20. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700 https://doi.org/10.1021/ja01150a078
  21. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846 https://doi.org/10.1021/ja01182a117
  22. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121 https://doi.org/10.1002/9780470171967.ch5
  23. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1993, 174.
  24. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741 https://doi.org/10.1021/ja00385a031
  25. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 296
  26. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845 https://doi.org/10.1021/jo00005a034
  27. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, pp 81-115
  28. Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljaber, M. H.; Miller, B.;Kevill, D. N. J. Chem. Soc. Dalton Trans. 1997, 3819
  29. Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040 https://doi.org/10.1039/b402093f
  30. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399 https://doi.org/10.1021/jo020467n
  31. Kevill, D. N.; Koh, H. J. J. Phys. Org. Chem. 2007, 20, 88 https://doi.org/10.1002/poc.1124
  32. Koh, H. J.; Kang, S. J.; Kevill, D. N. Bull. Korean Chem. Soc. 2008, 10, 1927
  33. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759 https://doi.org/10.1002/poc.425
  34. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834 https://doi.org/10.1021/jo9814905
  35. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287 https://doi.org/10.1002/9780470171950.ch6
  36. Neimysheva, A. A.; Savchik, V.; Ermolaeva, M. V.; Knunyants, I. L. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.) 1968, 2104
  37. Ketelaar, J. A. A.; Gresmann, H. R.; Koopmans, K. Recl. Trav. Chim. Pays-Bas. 1952
  38. Chlebowski, J. F.; Coleman, J. E. J. Biol. Chem. 1974, 247, 7192
  39. Cook, R. D.; Farah, S.; Ghawi, L.; Itani, A.; Rahil, J. Can. J. Chem. 1986, 64, 1630 https://doi.org/10.1139/v86-269
  40. Bel'skii, V. E.; Bezzubova, N. N.; Akamsin, V. D.; Eliseenkov, V. N.; Rizpolozhenskii, N. I.; Puduvik, A. N. Dokl. Akad. Nauk. SSSR 1971, 197, 85; Eng. Trans. p 171
  41. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc.2005, 127, 7703 https://doi.org/10.1021/ja0501565
  42. Douglas, K. T.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1976, 515
  43. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823 https://doi.org/10.1021/jo070171n
  44. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.;Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213 https://doi.org/10.1139/v86-037
  45. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61 https://doi.org/10.2174/1385272053369349
  46. Omakor, J. E.; Onyido, I.; VanLoon, G. W.; Buncel, E. J. Chem. Soc.,Perkin Trans. 2 2001, 324.
  47. Gregersen, B. A.; Lopez, X.;York, D. M. J. Am. Chem. Soc. 2003, 125, 7178. https://doi.org/10.1021/ja035167h
  48. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997,119, 5477. https://doi.org/10.1021/ja964217y
  49. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  50. Lee, I.; Sung, D. D.; Uhm, T. S.; Ryu, Z. H. J. Chem. Soc.,Perkin Trans. 2 1989, 1697.
  51. Yew, K. H.; Koh, H. J.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1995, 2263.
  52. Halmann, M. Phosphorus Sulfur. 1988, 40, 251. https://doi.org/10.1080/03086648808072922
  53. Dostrovsky, I.; Halmann, M. J. Chem. Soc. 1953, 502.
  54. Dostrovsky, I.; Halmann, M. J. Chem. Soc. 1956, 1004.
  55. Corriu, R. J. P. Phosphorus Sulfur 1986, 27, 1.
  56. Lanneau, G. F. Phosphorus Sulfur 1986, 27, 43. https://doi.org/10.1080/03086648608072757
  57. Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70. https://doi.org/10.1021/ar50003a002
  58. Hall, H. K. Jr. J. Org. Chem. 1956, 21, 248. https://doi.org/10.1021/jo01108a607
  59. Wadsworth, W. Jr.; Horton, H. J. Am. Chem. Soc. 1970, 92, 3785. https://doi.org/10.1021/ja00715a042
  60. Lee, S. H.; Rhu, C. J.; Kyong, J. B.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2007, 28, 657. https://doi.org/10.5012/bkcs.2007.28.4.657
  61. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  62. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  63. Kevill, D. N.; D'Souza, M. J. Collect. Czech. Chem. Commun. 1999, 64, 1790. https://doi.org/10.1135/cccc19991790
  64. Bentley, T. W.;Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753.
  65. Kevill, D. N.; D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  66. Kyong, J. B.; Won, H. S.; Lee, Y. H.; Kevill, D. N. Bull. Korean Chem. Soc. 2005, 26, 661. https://doi.org/10.5012/bkcs.2005.26.4.661
  67. Kevill, D. N.; Park, B. C.; Park, K. H.; D'Souza, M. J.;Yaakoubd, L.; Mlynarski, S. L.; Kyong, J. B. Org. Biomol. Chem. 2006, 4, 1580. https://doi.org/10.1039/b518129a
  68. Kevill, D. N.; Kim, C. B. J. Org. Chem. 2005, 70, 1490. https://doi.org/10.1021/jo048103d
  69. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
  70. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
  71. Kyong, J. B.; Ryu, S. H.; Kevill, D. N. Int. J. Mol. Sci. 2006, 7, 186. https://doi.org/10.3390/i7070186
  72. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 2004, 69, 7044. https://doi.org/10.1021/jo0492259
  73. Kyong, J. B.; Won, H. S.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  74. Hoffmann, H. M. R. J. Chem. Soc. 1965, 6753. https://doi.org/10.1039/jr9650006753
  75. Ingold, C. K. In Structure and Mechanism in Organic Chemistry, $2^{nd}$ ed.;Cornell University Press: Ithaca, NY, 1969; pp 471-473.
  76. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, $3^{rd}$ ed.; Harper and Row: New York,1987;pp 373-376.
  77. Gordon, I. M.; Maskill, H.; Ruasse, M.-F. Chem Soc. Rev. 1989, 18, 123. https://doi.org/10.1039/cs9891800123
  78. Koo, I. S.; Lee, I.; Oh, J. U.; Yang, K. Y.; Bentley, T. W. J. Phys. Org. Chem. 1993, 6, 223. https://doi.org/10.1002/poc.610060405
  79. Lee, I.; Koh, H. J.; Park, Y. S.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1993, 1575.
  80. Kevill, D. N.; Kolwyck, K. C.; Weitl, F. L. J. Am. Chem. Soc. 1970, 92, 7300. https://doi.org/10.1021/ja00728a012
  81. Koh, H. J.; Kang, S. J.; Kevill, D. N. Phosphorus, Sulfur, and Silicon 2008, 183, 364. https://doi.org/10.1080/10426500701734943

Cited by

  1. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of Phenyl Methanesulfonyl Chloride in Aqueous Binary Mixtures vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1897
  2. Studies of Solvolyses of Biphenyl-4-carbonyl Chloride by Extended Grunwald-Winstein Equation vol.60, pp.1, 2016, https://doi.org/10.5012/jkcs.2016.60.1.16
  3. Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate vol.30, pp.10, 2009, https://doi.org/10.5012/bkcs.2009.30.10.2413
  4. Kinetic Studies of the Solvolyses of Phenyl 4-Methylphenoxy Thiophosphinyl Chloride vol.30, pp.10, 2009, https://doi.org/10.5012/bkcs.2009.30.10.2437
  5. Correlation of the Rates of Solvolysis of Chlorodiphenylphosphine Using the Extended Grunwald-Winstein Equation vol.185, pp.4, 2009, https://doi.org/10.1080/10426500903012478
  6. Rate and Product Studies on the Solvolyses of Allyl Chloroformate vol.33, pp.12, 2009, https://doi.org/10.5012/bkcs.2012.33.12.4117
  7. Product-Rate Correlations for Solvolyses of 2,4-Dimethoxybenzenesulfonyl Chloride vol.35, pp.1, 2009, https://doi.org/10.5012/bkcs.2014.35.1.51
  8. Rate and Product Studies of 5-Dimethylamino-Naphthalene-1-Sulfonyl Chloride under Solvolytic Conditions vol.35, pp.8, 2009, https://doi.org/10.5012/bkcs.2014.35.8.2285
  9. Application of the Extended Grunwald-Winstein Equation to the Solvolyses of 4-(Chlorosulfonyl)biphenyl vol.61, pp.1, 2009, https://doi.org/10.5012/jkcs.2017.61.1.25