DOI QR코드

DOI QR Code

Optical Scanning Holography - A Review of Recent Progress

  • Poon, Ting-Chung (The Bradley Department of Electrical and Computer Engineering, Virginia Tech)
  • Received : 2009.11.23
  • Accepted : 2009.11.24
  • Published : 2009.12.25

Abstract

Optical scanning holography (OSH) is a distinct digital holographic technique in that real-time holographic recording a three-dimensional (3-D) object can be acquired by using two-dimensional active optical heterodyne scanning. Applications of the technique so far have included optical scanning cryptography, optical scanning microscopy, 3-D pattern recognition, 3-D holographic TV, and 3-D optical remote sensing. This paper reviews some of the recent progress in OSH. Some possible further works are also discussed.

Keywords

References

  1. T.-C. Poon, ed., Digital Holography and Three-dimensional Display (Springer, New York, USA, 2006)
  2. T.-C. Poon and A. Korpel, 'Optical transfer function of an acousto-optic heterodyning image processor,' Opt. Lett. 4, 317-319 (1979) https://doi.org/10.1364/OL.4.000317
  3. T.-C. Poon, 'Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,' J. Opt. Soc. Am. 2, 521-527 (1985) https://doi.org/10.1364/JOSAA.2.000521
  4. B. D. Duncan and T.-C. Poon, 'Gaussian beam analysis of optical scanning holography,' J. Opt. Soc. Am. A 9, 229-236 (1992) https://doi.org/10.1364/JOSAA.9.000229
  5. W. H. Carter, 'Three-dimensional remote sensing by optical scanning holography: comment,' Appl. Opt. 41, 5668-5671 (2002) https://doi.org/10.1364/AO.41.005668
  6. J. Swoger, M. Martinez-Corral, J. Huisken, and E. H. K. Stelzer, 'Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy,' J. Opt. Soc. Am. A 19, 1910-1918 (2002) https://doi.org/10.1364/JOSAA.19.001910
  7. P. Sun and J.-H. Xie, 'Method for reduction of background artifacts of images in scanning holography with a Fresnel-zone-plate coded aperture,' Appl. Opt. 43, 4214-4218 (2004) https://doi.org/10.1364/AO.43.004214
  8. J. Rosen, G. Indebetouw, and G. Brooker, 'Homodyne scanning holography,' Opt. Exp. 14, 4280-4285 (2006) https://doi.org/10.1364/OE.14.004280
  9. W.-C. Chien, D. S. Dilworth, E. Liu, and E. N. Leith, 'Synthetic-aperture chirp confocal imaging,' Appl. Opt. 45, 501-510 (2006) https://doi.org/10.1364/AO.45.000501
  10. T.-C. Poon, 'Three-dimensional image processing and optical scanning holography,' in Advances in Imaging and Electron Physics, vol. 126 (Academic Press, USA, 2003), pp. 329-350
  11. T.-C. Poon, 'Recent progress in optical scanning holography,' Journal of Holography and Speckle 1, 6-25 (2004) https://doi.org/10.1166/jhs.2004.003
  12. T.-C. Poon, Optical Scanning Holography with MATLAB(R) (Springer, New York, USA, 2007)
  13. T.-C. Poon, 'On the fundamentals of optical scanning holography,' American Journal of Physics 76, 738-745 (2008) https://doi.org/10.1119/1.2904472
  14. T.-C. Poon, T. Kim, G. Indebetouw, M. H. Wu, K. Shinoda, and Y. Suzuki, 'Twin-image elimination experiments for three-dimensional images in optical scanning holography,' Opt. Lett. 25, 215-217 (2000) https://doi.org/10.1364/OL.25.000215
  15. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, 'Imaging properties of scanning holographic microscopy,' J. Opt. Soc. Am. A 17, 380-390 (2000) https://doi.org/10.1364/JOSAA.17.000380
  16. T.-C. Poon and G. Indebetouw, 'Three-dimensional point spread functions of an optical heterodyne scanning image processor,' Appl. Opt. 42, 1485-1492 (2003) https://doi.org/10.1364/AO.42.001485
  17. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, 'Three-dimensional microscopy by optical scanning holography,' Opt. Eng. 34, 1338-1344 (1995) https://doi.org/10.1117/12.201662
  18. G. Indebetouw and W. Zhong, 'Scanning holographic microscopy of three-dimensional fluorescent specimens,' J. Opt. Soc. Am. A 23, 1699-1707 (2006) https://doi.org/10.1364/JOSAA.23.001699
  19. T.-C. Poon and T. Kim, Engineering Optics with MATLAB(R) (World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2006)
  20. T.-C. Poon, B. D. Schilling, G. Indebetouw, and B. Storrie, 'Three-dimensional holographic fluorescence microscopy,' U.S. Patent 6,038,041 (2000)
  21. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, 'Three-dimensional holographic fluorescence microscopy,' Opt. Lett. 22, 1506-1508 (1997) https://doi.org/10.1364/OL.22.001506
  22. G. Indebetouw, 'Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and optical sectioning,' J. Mod. Opt. 49, 1479-1500 (2002) https://doi.org/10.1080/09500340110105939
  23. T.-C. Poon and K. Doh, 'On the theory of optical hilbert transform for incoherent objects,' Opt. Exp. 15, 3006-3011 (2007) https://doi.org/10.1364/OE.15.003006
  24. B. Schilling and T.-C. Poon, 'Real-time pre-processing of holographic information,' Opt. Eng. 34, 3174-3180 (1995) https://doi.org/10.1117/12.213592
  25. T. Meeser, S. Huferath-von Lupke, and T. Kreis, 'Digital holographic recording of large scale objects for metrology and display,' in Fringe 2009: 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, ed. (Springer, Berlin, Germany, 2009)
  26. T. Kim and T.-C. Poon, 'Extraction of 3-D location of matched 3-D object using power fringe-adjusted filtering and wigner analysis,' Opt. Eng. 38, 2176-2183 (1999) https://doi.org/10.1117/1.602326
  27. B. W. Schilling and G. C. Templeton, 'Three-dimensional remote sensing by optical scanning holography,' Appl. Opt. 40, 5474-5481 (2001) https://doi.org/10.1364/AO.40.005474
  28. D.-J. Park, 'Three-dimensional display of a realistic object,' M.S. Thesis, Sejong University, South Korea (2004)
  29. T.-C. Poon, 'Three-dimensional television using optical scanning holography,' Journal of Information Display 3, 12-16 (2002) https://doi.org/10.1080/15980316.2002.9651895
  30. T. Kim, 'Optical sectioning by optical scanning holography and a Wiener filter,' Appl. Opt. 45, 872-879 (2006) https://doi.org/10.1364/AO.45.000872
  31. H. Kim, S.-W. Min, B. Lee, and T.-C. Poon, 'Optical sectioning for optical scanning holography using phasespace filtering with Wigner distribution function,' Appl. Opt. 47, D164-D175 (2008) https://doi.org/10.1364/AO.47.00D164
  32. X. Zhang, E. Y. Lam, and T.-C. Poon, 'Reconstruction of sectional images in holography using inverse imaging,' Opt. Exp. 16, 17215-17226 (2008) https://doi.org/10.1364/OE.16.017215
  33. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, 'Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,' Appl. Opt. 48, H113-H119 (2009) https://doi.org/10.1364/AO.48.00H113
  34. X. Zhang, E. Y. Lam, T. Kim, Y. S. Kim, and T.-C. Poon, 'Blind sectional image reconstruction for optical scanning holography,' Opt. Lett. 34, 3098-3100 (2009) https://doi.org/10.1364/OL.34.003098
  35. T. Kim and T.-C. Poon, 'Autofocusing in optical scanning holography,' Appl. Opt. 48, H153-H159 (2009) https://doi.org/10.1364/AO.48.00H153
  36. I. Yamaguchi and T. Zhang, 'Phase-shifting digital holography,' Opt. Lett. 22, 1268-1270 (1997) https://doi.org/10.1364/OL.22.001268

Cited by

  1. Near computation-free compression of Fresnel holograms based on adaptive delta modulation vol.50, pp.8, 2011, https://doi.org/10.1117/1.3605315
  2. Full color natural light holographic camera vol.21, pp.8, 2013, https://doi.org/10.1364/OE.21.009636
  3. Compressive optical scanning holography vol.2, pp.5, 2015, https://doi.org/10.1364/OPTICA.2.000476
  4. Methods of Single-Channel Digital Holography for Three-Dimensional Imaging 2015, https://doi.org/10.1109/TII.2015.2475247
  5. Phase retrieval based on transport of intensity and digital holography vol.57, pp.1, 2018, https://doi.org/10.1364/AO.57.00A229
  6. 41.2: Acoustooptical Scanning Holography 3D Image Capturing and Electronic Hologram Recording vol.42, pp.1, 2011, https://doi.org/10.1889/1.3621390
  7. Spatially incoherent single channel digital Fourier holography vol.37, pp.17, 2012, https://doi.org/10.1364/OL.37.003723
  8. Accommodative Response of Integral Imaging in Near Distance vol.8, pp.2, 2012, https://doi.org/10.1109/JDT.2011.2163701
  9. Single-pixel digital holography with phase-encoded illumination vol.25, pp.5, 2017, https://doi.org/10.1364/OE.25.004975
  10. Adaptive optics by incoherent digital holography vol.37, pp.13, 2012, https://doi.org/10.1364/OL.37.002694
  11. Spatial coherence analysis for optical scanning holography vol.54, pp.1, 2015, https://doi.org/10.1364/AO.54.000A59
  12. Coherence experiments in single-pixel digital holography vol.40, pp.10, 2015, https://doi.org/10.1364/OL.40.002366
  13. Full-color optical scanning holography with common red, green, and blue channels [Invited] vol.55, pp.3, 2016, https://doi.org/10.1364/AO.55.000A17
  14. Three-dimensional complex image coding using a circular Dammann grating vol.50, pp.7, 2011, https://doi.org/10.1364/AO.50.000B38
  15. Heterodyne holography with full control of both the signal and reference arms vol.55, pp.3, 2016, https://doi.org/10.1364/AO.55.0000A8
  16. Three-dimensional display of a horizontal-parallax-only hologram vol.50, pp.7, 2011, https://doi.org/10.1364/AO.50.000B81
  17. Spatial–temporal demodulation technique for heterodyne optical scanning holography vol.68, 2015, https://doi.org/10.1016/j.optlaseng.2014.12.012
  18. Low-complexity compression of holograms based on delta modulation vol.284, pp.8, 2011, https://doi.org/10.1016/j.optcom.2010.12.060
  19. Nonlinearity compensation and complex-to-phase conversion of complex incoherent digital holograms for optical reconstruction vol.24, pp.13, 2016, https://doi.org/10.1364/OE.24.014582
  20. Speckle-free digital holographic recording of a diffusely reflecting object vol.21, pp.7, 2013, https://doi.org/10.1364/OE.21.008183
  21. Applications of Digital Holography in Biomedical Microscopy vol.14, pp.2, 2010, https://doi.org/10.3807/JOSK.2010.14.2.077
  22. Speckle-Free Digital Hologram with Conversion to Off-Axis Horizontal-Parallax-Only Hologram vol.25, pp.2, 2014, https://doi.org/10.3807/KJOP.2014.25.2.085
  23. 3D/2D convertible projection-type integral imaging using concave half mirror array vol.18, pp.20, 2010, https://doi.org/10.1364/OE.18.020628
  24. Design and simulation of a high resolution active imaging technique utilizing Fresnel telescopy vol.123, pp.9, 2012, https://doi.org/10.1016/j.ijleo.2011.06.040
  25. Subsampled scanning holographic imaging (SuSHI) for fast, non-adaptive recording of three-dimensional objects vol.3, pp.8, 2016, https://doi.org/10.1364/OPTICA.3.000911
  26. Incoherent digital holographic adaptive optics vol.52, pp.1, 2013, https://doi.org/10.1364/AO.52.00A117
  27. Depth resolution enhancement in double-detection optical scanning holography vol.52, pp.13, 2013, https://doi.org/10.1364/AO.52.003079
  28. Restoration of digital off-axis Fresnel hologram by exemplar and search based image inpainting with enhanced computing speed vol.193, 2015, https://doi.org/10.1016/j.cpc.2015.03.018
  29. Evaluation of the Speckle Noise in Optical Scanning Holography vol.25, pp.3, 2014, https://doi.org/10.3807/KJOP.2014.25.3.142
  30. Low Complexity Compression and Speed Enhancement for Optical Scanning Holography vol.6, pp.1, 2016, https://doi.org/10.1038/srep34724
  31. Comparative analysis of autofocus functions in digital in-line phase-shifting holography vol.55, pp.27, 2016, https://doi.org/10.1364/AO.55.007663
  32. Stereo-Lighting Reconstruction of Optical Scanning Holography vol.12, pp.5, 2016, https://doi.org/10.1109/TII.2016.2587884
  33. Fast reconstruction of sectional images in digital holography vol.36, pp.14, 2011, https://doi.org/10.1364/OL.36.002650
  34. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy vol.20, pp.3, 2012, https://doi.org/10.1364/OE.20.003129
  35. Edge extraction using a time-varying vortex beam in incoherent digital holography vol.39, pp.14, 2014, https://doi.org/10.1364/OL.39.004176
  36. Compressive holography algorithm for the objects composed of point sources vol.56, pp.3, 2017, https://doi.org/10.1364/AO.56.000530
  37. Optical sectioning with a low-coherence phase-shifting digital holographic microscope vol.50, pp.7, 2011, https://doi.org/10.1364/AO.50.000B25
  38. Review of holographic-based three-dimensional object recognition techniques [Invited] vol.53, pp.27, 2014, https://doi.org/10.1364/AO.53.000G95
  39. High sampling rate single-pixel digital holography system employing a DMD and phase-encoded patterns vol.26, pp.16, 2018, https://doi.org/10.1364/OE.26.020342
  40. Computational imaging vol.10, pp.2, 2018, https://doi.org/10.1364/AOP.10.000409