DOI QR코드

DOI QR Code

Synthesis, Magneto-Spectral, Electrochemical, Thermal Characterization and Antimicrobial Investigations of Some Nickel(II) Complexes of Hydrazones of Isoniazid

Isoniazid의 hydrazone을 갖는 몇 가지 니켈(II) 착물들의 합성, 자기적 및 전기적 성질, 열적 특성과 항균성에 대한 연구

  • Prasad, Surendra (Division of Chemical Sciences, Faculty of Science, Technology and Environment, The University of the South Pacific) ;
  • Agarwal, Ram K. (Department of Chemistry, Lajpat Rai Postgraduate College)
  • Published : 2009.12.20

Abstract

The synthesis of a novel series of nickel(II) complexes with new ligands derived from hydrazones of isoniazid have been reported in present work. The complexes have general compositions [$Ni(L)_2X_2$] or $[Ni(L)_3](ClO_4)_2$ {L = N-isonicotinamido-furfuraldimine (INH-FFL), N-isonicotinamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) or N-isonicotinamido-cinnamalidene (INH-CIN) and X = $Cl^-$, ${NO_3}^-$, $ NCS^-$ or $CH_3COO^-$}. The ligands hydrazones behave as neutral bidentates (N and O donor) through the carbonyl oxygen and azomethine nitrogen. The new complexes with octahedral geometry have been characterized by elemental analysis, molecular weight determinations, magnetic susceptibility/moment, thermogravimetric, electrochemical and spectroscopic studies viz. infrared and electronic spectra. On the basis of conductivity measurements in nitrobenzene ($PhNO_2$) solution the [$Ni(L)_2X_2$] and $[Ni(L)_3](ClO_4)_2$ complexes have been found to be non-electrolytes and 1:2 electrolytes, respectively. Thermal properties have also been investigated, which support the geometry of the complexes. Antibacterial and antifungal properties of nickel(II) complexes and few standard drugs have also been examined and it has been observed that the complexes have moderate antibacterial activities.

본 연구는Isoniazid의 hydrazone으로부터 유도된 새로운 리간드를 갖는 몇 가지 새로운 니켈(II) 착물의 합성에 대해 보고한다. 착물의 조성은 [$Ni(L)_2X_2$] 또는 $[Ni(L)_3](ClO_4)_2$ {L = N-isonicotinamidofurfuraldimine(INH-FFL), N-isonicotinamido-3',4',5'-trimethoxybenzaldimine (INH-TMB) 또는 N-isonicotinamido-cinnamalidene (INH-CIN) 및 X=$Cl^-$, ${NO_3}^-$, $NCS^-$ 또는 $CH_3COO^-$} 이다. 리간드 hydrazone 은 카보닐 산소와 아조메틴 질소를 통해서 중성의 두 자리 (N및 O주개) 리간드로 작용한다. 육면체 구조를 갖는 새로운 착물들은 원소분석, 분자질량분석, 자화율, 열분석과 적외선 및 전기적 스펙트럼을 이용한 전기화학 및 분광학적 연구를 통해 규명하였다. 니트로벤젠($PhNO_2$) 에서의 전기 전도성 측정에 의하면 [$Ni(L)_2X_2$] 및 $[Ni(L)_3](ClO_4)_2$ 착물들은 각각 비전해질 및 1:2전해질임을 알았다. 착물의 기하구조를 알기 위한 열적특성도 역시 연구되었다. 니켈(II) 착물 및 약간의 표준 약품의 항균성 및 항진균성 또한 연구되었고, 이를 통해 착물이 적당한 향균성 활동을 하는 것을 알 수 있었다.

Keywords

References

  1. Chaudhary, A.; Phor, A.; Singh, R. V. Bioinorg. Chem. Appl. 2005, 3, 161 https://doi.org/10.1155/BCA.2005.161
  2. Prasad, S.; Agarwal, R. K. Trans. Metal Chem. 2007, 32, 143 and refs. cited therein https://doi.org/10.1007/s11243-006-0119-9
  3. Agarwal, R. K.; Prakash, B. Trans. Metal Chem. 2005, 30, 696 https://doi.org/10.1007/s11243-005-5717-4
  4. Agarwal, R. K.; Prasad, S.; Gahlot, N. Turkish J. Chem. 2004, 28, 691
  5. Agarwal, R. K.; Prasad, S. Revs. Inorg. Chem. 2006, 26, 471
  6. Agarwal, R. K.; Prasad, S. Turkish J. Chem. 2005, 29, 289
  7. Agarwal, R. K.; Prasad, S. Bioinorg. Chem. Appl. 2005, 3, 271 and refs. Cited therein https://doi.org/10.1155/BCA.2005.271
  8. Tossadis, I. A.; Bolos, C. A.; Aslanidis, P. N.; Katsoulos, G. A. Inorg. Chim. Acta 1987, 133, 275 https://doi.org/10.1016/S0020-1693(00)87779-8
  9. Anten, J. A.; Nicholis, D.; Markpoulos, J. M.; Marrkopoulou, O. Polyhedron 1987, 6, 1074 https://doi.org/10.1016/S0277-5387(00)80958-4
  10. Dilworth, J. R. Coord. Chem. Rev. 1976, 21, 29 https://doi.org/10.1016/S0010-8545(00)82050-0
  11. Merchant, J. R.; Clothia, D. S. J. Med. Chem. 1970, 13, 335 https://doi.org/10.1021/jm00296a058
  12. Biradar, N. S.; Havinale, B. R. Inorg. Chim. Acta 1976, 17, 157 https://doi.org/10.1016/S0020-1693(00)81975-1
  13. Sharma, R. P.; Kothari, A. K.; Sharma, N. K. Ind. J. Derm. Vener. Lepr. 1995, 61, 261
  14. Agarwal, R. K.; Sharma, S. K. Polish J. Chem. 1993, 67, 581
  15. Mandlik, P. R.; Aswale, S. R.; Aswar, A. S. J. Indian Chem. Soc. 2002, 79, 689
  16. Agarwal, R. K.; Singh, L.; Sharma, D. K.; Singh, R. Turkish J. Chem. 2005, 29, 309
  17. Prasad, S.; Agarwal, R. K, J. Korean Chem. Soc. 2009, 53, 17 https://doi.org/10.5012/jkcs.2009.53.1.017
  18. Prasad, S.; Agarwal, R. K, Res. Lett. Inorg. Chem. 2008, 2008 (Article ID 350921), 1
  19. Bassett, J.; Denney, R. C.; Jeffery, G. H.; Mendham, J. In Vogel's Text Book of Quantitative Inorganic Analysis, 4th Ed., Longman: London, 1986
  20. Agarwal, R. K.; Sarin, R. K. Polyhedron 1993, 12, 2411 https://doi.org/10.1016/S0277-5387(00)83061-2
  21. Agarwal, R. K.; Sarin, R. K.; Agarwal, H. Bull. Chem. Soc. Ethio. 1995, 9, 23
  22. Krishnan, P. S. R.; Indrasenan, P. Indian J. Chem. 1989, 28A, 234
  23. Agarwal, R. K.; Prakash, J. Polyhedron 1991, 10, 2399 https://doi.org/10.1016/S0277-5387(00)86201-4
  24. Agarwal, R. K.; Dutt, P.; Prakash, J. Polish J. Chem. 1992, 66, 899
  25. Burns, G. R. Inorg. Chem. 1968, 7, 272 https://doi.org/10.1021/ic50060a022
  26. Nakamoto, K. In Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, U. S. A., 1970
  27. Krishnamurthy, S. K.; Sundararajan, S. Canad. J. Chem. 1969, 47, 995 https://doi.org/10.1139/v69-157
  28. Burmeister, J. L. Coord. Chem. Rev. 1990, 105, 77 and refs. cited therein https://doi.org/10.1016/0010-8545(90)80019-P
  29. Addison, C. C.; Legan, N. Quart. Chem. Rev. 1971, 25, 289 https://doi.org/10.1039/qr9712500289
  30. Lever, A. B. P.; Mantiovane, E.; Ramaswamy, B. S. Canad. J. Chem. 1971, 49, 1957 https://doi.org/10.1139/v71-315
  31. Nakamoto, K.; Morimoto, J. Y.; Martell, A. E. J. Am. Chem. Soc. 1961, 83, 4528 https://doi.org/10.1021/ja01483a009
  32. Lever, A. B. P. J. Chem. Edu. 1968, 45, 711 https://doi.org/10.1021/ed045p711
  33. Pandey, G.; Narang, K. K. Bioinorg. Chem. Appl. 2005, 3, 217 https://doi.org/10.1155/BCA.2005.217
  34. Ferrari, M. B.; Fava, G. G.; Leporti, E.; Pelosi, G.; Tarasconi, P.; Albertini, R.; Bonati, A.; Lunghi, P.; Pineli, S. J. Inorg. Biochem. 1998, 70, 145 https://doi.org/10.1016/S0162-0134(98)10012-0
  35. Thomas, J.; Parameshwaram, G. Asian J. Chem. 2002, 14, 1354; 1370
  36. Murukan, B.; Mohanan, K. Trans. Metal Chem. 2006, 31, 441 https://doi.org/10.1007/s11243-006-0011-7
  37. Srivastava, A. K.; Pandey, O. P.; Sengupta, S. K. Bioinorg. Chem. Appl. 2005, 3, 289 https://doi.org/10.1155/BCA.2005.289
  38. Sharaby, C. M. Spectrochim. Acta A: Mol. and Biomol. Spectrosc. 2007, 66, 1271 https://doi.org/10.1016/j.saa.2006.05.030
  39. Mohamed, G. G.; Sharaby, C. M. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2007, 66, 949 https://doi.org/10.1016/j.saa.2006.04.033
  40. Tumer, M.; Ekinci, D.; Tumer, F.; Bulut, A. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2007, 66, 1271 https://doi.org/10.1016/j.saa.2006.05.030
  41. Tumer, M.; Deligonul, N.; Golcu, A.; Akgun, E.; Dolaz, M. Trans. Metal Chem. 2006, 31, 1 https://doi.org/10.1007/s11243-005-6249-7

Cited by

  1. Interactions of N′-[1-(2-Hydroxyphenyl)ethylidene]Isonicotinohydrazide, a Hydrazone Schiff Base and Selected Lanthanides: Potentiometric and Spectral Studies vol.45, pp.12, 2016, https://doi.org/10.1007/s10953-016-0542-2
  2. Studies on the Effect of Picolines on the Stereochemistry of Lanthanide(III) Nitrate Coordination Compounds of 4[N-Furfural)amino]antipyrine Semicarbazone and Antibacterial Activities vol.55, pp.4, 2011, https://doi.org/10.5012/jkcs.2011.55.4.594
  3. Synthesis, Antibacterial and Antifungal Activities of Some Cobalt(II) and Nickel(II) Complexes of Thiosemicarbazones vol.55, pp.2, 2011, https://doi.org/10.5012/jkcs.2011.55.2.189
  4. Biological aspects of Schiff base–metal complexes derived from benzaldehydes: an overview vol.15, pp.10, 2018, https://doi.org/10.1007/s13738-018-1411-2