DOI QR코드

DOI QR Code

Effects of Chemical Composition and Particle Size of Starting Aluminum Source on the Spheroidization in the Flame Fusion Process

화염용융법에 의한 구상 알루미나 제조에 미치는 초기 알루미나 원료의 화학조성과 입도의 영향

  • Eom, Sun-Hui (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Pee, Jae-Hwan (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Jong-Keun (DaeHan Ceramics Co., Ltd.) ;
  • Hwang, Kwang-Taek (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Woo-Seok (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Kyeong-Ja (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 엄선희 (한국세라믹기술원 도자세라믹센터) ;
  • 피재환 (한국세라믹기술원 도자세라믹센터) ;
  • 이종근 (주식회사 대한세라믹스) ;
  • 황광택 (한국세라믹기술원 도자세라믹센터) ;
  • 조우석 (한국세라믹기술원 도자세라믹센터) ;
  • 김경자 (한국세라믹기술원 도자세라믹센터)
  • Published : 2009.12.28

Abstract

Various inorganic fillers improve the thermal conductivity and physical properties of organic products. Alumina has been used a representative filler in the heat radiation sheet for the heat radiation of electric device. The high filling rate of alumina increases the thermal conductivity and properties of products. We successfully developed the spherical alumina by flame fusion process using the oxygen burner with LPG fuel. In the high temperature flame (2500$\sim$3000$^{\circ}C$) of oxygen burner, sprayed powders were melting and then rotated by carrier gas. This surface melting and rotation process made spherical alumina. Especially effects of chemical composition and particle size of stating materials on the melting behavior of starting materials in the flame and spheroidization ratio were investigated. As a result, spheroidization ratio of boehmite and aluminum hydroxide with endothermic reaction of dehydration process was lower than that of the sintered alumina without dehydration reaction.

Keywords

References

  1. L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu and T. J. Goh: Thermochim. Acta., 430 (2005) 155 https://doi.org/10.1016/j.tca.2004.12.024
  2. Y. He, B. E. Moreira, A, Overson, S. H. Nakamura, C. Bider and J. F. Briscoe: Thermochim. Acta., 357-358 (2000) 1 https://doi.org/10.1016/S0040-6031(00)00357-9
  3. R. Viswanath, V. Wakharkar, A. Watwe and V. Lebonheur: Intel Technol. J. Q., 3 (2000) 1
  4. X. Yunsheng, L. Xiangcheng and D. D. L. Chung: J. Electron. Packag., 124 (2002) 188 https://doi.org/10.1115/1.1477191
  5. E. G. Wolff and D. A. Schneider: Int. J. Heat Mass Transfer., 41 (1998) 3469 https://doi.org/10.1016/S0017-9310(98)00067-2
  6. X. Yunsheng, L. Xiangcheng and D. D. L. Chung: J. Electron. Packag., 122 (2000) 128 https://doi.org/10.1115/1.483144
  7. C. K. Leong and D. D. L. Chung: Carbon., 41 (2003) 2459 https://doi.org/10.1016/S0008-6223(03)00247-1
  8. Y. He: Thermochim. Acta. 392 (2002) 13 https://doi.org/10.1016/S0040-6031(02)00065-5
  9. Genoveva Buelna and Y.S.Lin: J. Microporous Mesoporous Mater., 30 (1999) 359 https://doi.org/10.1016/S1387-1811(99)00065-7
  10. M. Mofazzal Hossain, Yaochun Yao, Takayuki Watanabe, Fuji Funabiki and Tetsuji Yano: Chem. Eng. J., 150 (2009) 561 https://doi.org/10.1016/j.cej.2009.03.013
  11. S. G. Deng and Y. S. Lin: AIChE J., 43 (1998) 505
  12. Z. W. Wang and Y. S. Lin: J.Catal., 174 (1998) 43 https://doi.org/10.1006/jcat.1997.1913
  13. L. L. Cesar de faria Jr., K. R. Tania de Oliveira, L. Vera dos Santos, C. A. Rosa, J. D. Ardisson, A. Waldemar de Almeida Macedo and A. Santos: Microporous Mesoporous Mater., 120 (2009) 228 https://doi.org/10.1016/j.micromeso.2008.11.008
  14. J.T. Feng, Y. J. Lin, F. Li, D. G. Evans and D. Q. Li: Appl. Catal. A., 329 (2007) 112 https://doi.org/10.1016/j.apcata.2007.06.032
  15. T. Hyodo, M. Murakami, Y. Shimizu and M. Egashira: J. Eur. Ceram. Soc., 25 (2005) 3563 https://doi.org/10.1016/j.jeurceramsoc.2004.10.011
  16. S. Kumar, V. Selvarajan, P. V. A. Padmanabhan and K.P. Sreekumar: J. Mater. Process. Technol., 176 (2006) 87 https://doi.org/10.1016/j.jmatprotec.2006.02.023
  17. M. Li and P. D. Christofides: Chem. Eng. Sci., 61 (2006) 6540 https://doi.org/10.1016/j.ces.2006.05.050
  18. N. K. Miller Jothi, G. Magarajan and S.Renganarayanan: Int. J. Therm. Sci., 47 (2008) 450 https://doi.org/10.1016/j.ijthermalsci.2006.06.012
  19. S. Kotake and K. Takamoto: J. Sound.Vib., 112 (1987) 345 https://doi.org/10.1016/S0022-460X(87)80201-8
  20. Han S. Kim, Vaibhav K. Arghode and Ashwani K. Gupta: Int. J. Hydrogen. Energ., 34 (2009) 1045 https://doi.org/10.1016/j.ijhydene.2008.10.036