DOI QR코드

DOI QR Code

Effects of Growth Temperature on the Properties of ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering

  • Cho, Shin-Ho (Department of Electronic Materials Engineering, Silla University)
  • Published : 2009.12.31

Abstract

The effects of the growth temperature on the properties of ZnO thin films were investigated by using X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectrophotometry, and Hall measurements. The ZnO films were deposited by rf magnetron sputtering at various growth temperatures in the range of 100-$400{^{\circ}C}$. A strong c-axis preferred orientation is observed for all of the samples. As the growth temperature increases, the crystalline orientation of the ZnO (002) plane is not changed, but the full width at half maximum gets smaller. The dependence of the electron concentration, mobility, and resistivity on the growth temperature exhibits that the ZnO films have a higher electron concentration at higher temperatures, thus giving them a low resistivity. The optical transmittance and band gap energy, calculated from the spectra of optical absorbance, show a significant dependence on the growth temperature. As for the sample grown at $100{^{\circ}C}$, the average transmittance is about 90% in the visible wavelength range and the band gap is estimated to be 3.13 eV.

Keywords

References

  1. T. L. Phan, Y. K. Sun, R. Vincent, D. Cherns, N. X. Nghia, and S. C. Yu, J. Korean. Phys. Soc. 52, 1633 (2008) https://doi.org/10.3938/jkps.52.1633
  2. Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, and C. J. Youn, Appl. Phys. Lett. 87, 153504 (2005) https://doi.org/10.1063/1.2089176
  3. P. H. Ngan, N. Q. Tien, D. T. Dat, P. V. Nho, N. X. Nghia, and S. C. Yu, J. Korean. Phys. Soc. 52, 1594 (2008) https://doi.org/10.3938/jkps.52.1594
  4. V. Craciun, J. elders, J. G. E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett. 65, 2963 (1994) https://doi.org/10.1063/1.112478
  5. M. Abouzaid, P. Tailpied, P. Ruterana, C. Liu, B. Xiao, S. J. Cho, Y. T. Moon, and H. Morkoc, Superlatta. Microstruct. 39, 387 (2005) https://doi.org/10.1016/j.spmi.2005.08.064
  6. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005) https://doi.org/10.1063/1.1940137
  7. D. K. Hwang, K. H. Bang, M. C. Jeong, and J. M. Myoung, J. Cryst. Growth, 254, 449 (2003) https://doi.org/10.1016/S0022-0248(03)01205-3
  8. J. H. Lee, K. H. Ko, and B. O. Park, J. Cryst. Growth, 247, 119 (2003) https://doi.org/10.1016/S0022-0248(02)01907-3
  9. R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchiele, and J. R. Ramos-Barrado, Thin Solid Films, 426, 68 (2003) https://doi.org/10.1016/S0040-6090(02)01331-7
  10. R. Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, and A. Foucaran, Mater. Sci. Eng. B, 97, 68 (2003) https://doi.org/10.1016/S0921-5107(02)00406-3
  11. C. S. Son, S. M. Kim, Y. H. Kim, S. I. Kim, Y. T. Kim, K. H. Yoon, I. H. Choi, and H. C. Lopez, J. Korean. Phys. Soc. 45, S685 (2004)
  12. S. Cho, J. Korean. Phys. Soc. 49, 985 (2006)
  13. L. Zhu, Z. Ye, F. Zhuge, G. Yuan, and J. Lu, Surf. Coat. Technol. 198, 354 (2005) https://doi.org/10.1016/j.surfcoat.2004.10.076
  14. S. Bose, S. Kim, S. H. Jeong, S. S. Kim, and B. T. Lee, Semicond. Sci. Technol. 19, L29 (2004) https://doi.org/10.1088/0268-1242/19/3/L06
  15. H. W. Kim and N. H. Kim, Mater. Sci. Eng. B, 103, 297 (2003) https://doi.org/10.1016/S0921-5107(03)00281-2
  16. Y. M. Lu, C. M. Chang, S. I. Tsai, and T. S. Wey, Thin Solid Films, 447/448, 56 (2004) https://doi.org/10.1016/j.tsf.2003.09.022
  17. F. Yakuphanoglu, M. Sekerci, and O. F. Ozturk, Opt. Comm. 239, 275 (2004) https://doi.org/10.1016/j.optcom.2004.05.038
  18. Y. Liu and J. Lian, Appl. Surf. Sci. 253, 3727 (2007) https://doi.org/10.1016/j.apsusc.2006.08.012

Cited by

  1. Thermal ionization induced metal-semiconductor transition and room temperature ferromagnetism in trivalent doped ZnO codoped with lithium vol.115, pp.9, 2014, https://doi.org/10.1063/1.4867036
  2. Influence of substrate temperature on properties of nc ZnO–SiOx thin films grown by rf co-sputter deposition vol.639, 2015, https://doi.org/10.1016/j.jallcom.2015.03.192
  3. Influence of Mg doping on the properties of ZnO films prepared on c-cut sapphire by sputtering vol.67, 2014, https://doi.org/10.1016/j.spmi.2014.01.007
  4. UV-treated ZnO films for liquid crystal alignment vol.6, pp.57, 2016, https://doi.org/10.1039/C6RA07454E
  5. Characterization of Metal–Insulator–Semiconductor Capacitor with Poly(methyl methacrylate):Titanium Dioxide as Insulator vol.52, pp.6S, 2013, https://doi.org/10.7567/JJAP.52.06GG02
  6. Optical and electrical properties of CuO thin films deposited at several growth temperatures by reactive RF magnetron sputtering vol.19, pp.6, 2013, https://doi.org/10.1007/s12540-013-6030-y
  7. Effects of rapid thermal annealing on the properties of In2O3 thin films grown on glass substrate by rf reactive magnetron sputtering vol.89, 2012, https://doi.org/10.1016/j.mee.2011.03.147
  8. Effects of Substrate and Annealing Temperatures on the Properties of SrWO4:Dy3+, Eu3+ Phosphor Thin Films vol.26, pp.10, 2016, https://doi.org/10.3740/MRSK.2016.26.10.577
  9. Effect of substrate temperature on the properties of copper nitride thin films deposited by reactive magnetron sputtering vol.12, 2012, https://doi.org/10.1016/j.cap.2012.05.033
  10. Structural, optical, and electrical properties of RF-sputtered indium oxide thin films vol.60, pp.12, 2012, https://doi.org/10.3938/jkps.60.2058
  11. RF magnetron sputtered ITO:Zr thin films for the high efficiency a-Si:H/c-Si heterojunction solar cells vol.20, pp.3, 2014, https://doi.org/10.1007/s12540-014-3001-x
  12. On the reduced electrical conductivity of radio-frequency sputtered doped ceria thin film by elevating the substrate temperature vol.16, pp.3, 2016, https://doi.org/10.1016/j.cap.2015.12.011
  13. Microstructure-related piezoelectric properties of a ZnO film grown on a Si substrate vol.42, pp.15, 2016, https://doi.org/10.1016/j.ceramint.2016.07.192
  14. Effect of nitrogen flow ratio on the structural and optical properties of aluminum nitride thin films vol.326, pp.1, 2011, https://doi.org/10.1016/j.jcrysgro.2011.01.092
  15. Synthesis and some surface studies of laminated ZnO/TiO2 transparent bilayer by two-step growth vol.44, 2016, https://doi.org/10.1016/j.mssp.2015.12.024
  16. Exploration of Wettability and Optical Aspects of ZnO Nano Thin Films Synthesized by Radio Frequency Magnetron Sputtering vol.6, 2016, https://doi.org/10.5772/62804
  17. Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication vol.390, 2016, https://doi.org/10.1016/j.apsusc.2016.08.081
  18. Influence of power and temperature on properties of sputtered AZO films vol.620, 2016, https://doi.org/10.1016/j.tsf.2016.08.073
  19. Influence of pyrolytic temperature on the properties of ZnO films optimized for H2 sensing application vol.25, pp.5, 2014, https://doi.org/10.1007/s10854-014-1868-4
  20. Simple and cost-effective fabrication of size-tunable zinc oxide architectures by multiple size reduction technique vol.13, pp.2, 2012, https://doi.org/10.1088/1468-6996/13/2/025003
  21. Influence of Oxygen Flow Ratio on the Properties of In2O3Thin Films Grown by RF Reactive Magnetron Sputtering vol.19, pp.3, 2010, https://doi.org/10.5757/JKVS.2010.19.3.224
  22. Structural and optical properties of DC magnetron sputtered ZnO films on glass substrate and their modification by Ag ions implantation vol.4, pp.7, 2017, https://doi.org/10.1088/2053-1591/aa7e40
  23. Effect of growth temperature on structural, electrical, and optical properties of Gd-doped zinc oxide films vol.211, pp.3, 2014, https://doi.org/10.1002/pssa.201330345
  24. Characterization of zinc oxide films deposited in helium–oxygen and argon–helium–oxygen atmospheres by sputtering vol.620, 2016, https://doi.org/10.1016/j.tsf.2016.08.074
  25. Structural, Optical, and Electrical Properties of In2O3Thin Films Deposited on Various Buffer Layers vol.25, pp.7, 2012, https://doi.org/10.4313/JKEM.2012.25.7.491
  26. EFFECTS OF SUBSTRATE TEMPERATURE ON STRUCTURAL, OPTICAL AND SURFACE MORPHOLOGICAL PROPERTIES OF PULSED LASER DEPOSITED ZnO THIN FILMS vol.20, pp.03n04, 2013, https://doi.org/10.1142/S0218625X13500327
  27. Growth of ZnO nanorod arrays by one-step sol–gel process vol.80, pp.2, 2016, https://doi.org/10.1007/s10971-016-4131-z
  28. Influence of substrate temperature on the properties of spray deposited nanofibrous zinc oxide thin films vol.124, pp.1, 2018, https://doi.org/10.1007/s00339-017-1473-5
  29. Effect of deposition temperature on the properties of ZnO-doped indium oxide thin films vol.64, pp.10, 2014, https://doi.org/10.3938/jkps.64.1488
  30. Effect of deposition temperature on the properties of nitrogen-doped AZO thin films grown on glass by rf reactive magnetron sputtering vol.172, pp.3, 2010, https://doi.org/10.1016/j.mseb.2010.06.008
  31. Effect of substrate temperature on structural, morphological, optical and electrical properties of MnIn2S4 thin films prepared by nebulizer spray pyrolysis technique vol.48, 2016, https://doi.org/10.1016/j.mssp.2016.03.008
  32. Fast Formation of Surface Oxidized Zn Nanorods and Urchin-Like Microclusters vol.2014, 2014, https://doi.org/10.1155/2014/257494
  33. Highly transparent RF magnetron-sputtered indium tin oxide films for a-Si:H/c-Si heterojunction solar cells amorphous/crystalline silicon vol.24, 2014, https://doi.org/10.1016/j.mssp.2014.02.044
  34. Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment vol.309, 2014, https://doi.org/10.1016/j.apsusc.2014.04.158
  35. Synthesis and Emission Properties of CaMoO4:Tb3+Green Phosphor Powders and Thin Films vol.26, pp.4, 2013, https://doi.org/10.4313/JKEM.2013.26.4.264
  36. Improving electrical properties of sol-gel derived zinc oxide thin films by plasma treatment vol.120, pp.15, 2016, https://doi.org/10.1063/1.4964941
  37. Structural, electrical and optical properties of indium chloride doped ZnO films synthesized by Ultrasonic Spray Pyrolysis technique vol.524, 2012, https://doi.org/10.1016/j.tsf.2012.09.050
  38. Sputtered AZO Thin Films for TCO and Back Reflector Applications in Improving the Efficiency of Thin Film a-Si:H Solar Cells vol.9, pp.1, 2017, https://doi.org/10.1007/s12633-015-9350-3
  39. Structural, Electrical, and Optical Properties of Bismuth-doped Zinc-oxide Thin Films Grown by Radio-frequency Magnetron Sputtering vol.72, pp.8, 2018, https://doi.org/10.3938/jkps.72.943