DOI QR코드

DOI QR Code

Effect of the Temperature on Resistivity of Carbon Black-Polyethylene Composites Below and Above Percolation Threshold

Carbon Black-Polyethylene복합재료의 Percolation Threshold 전후 저항율에 미치는 온도의 영향

  • Shin, Soon-Gi (Division of Advanced Materials and Chemical Engineering, Kangwon National University)
  • 신순기 (강원대학교 신소재화학공학부)
  • Published : 2009.12.27

Abstract

Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.

Keywords

References

  1. C. Ishida, Handbook of Electronic Materials, p.769, ed. K. Z. Asakura, Asakura shoden, Tokyo (2006)
  2. H. S. Hong, Kor. J. Mater. Res., 18(7), 384(2008) https://doi.org/10.3740/MRSK.2008.18.7.384
  3. Y. J. Song, J. H. Seo, Y. S. Lee and S. K. Rha, Kor. J. Mater. Res., 19(6), 344(2009) https://doi.org/10.3740/MRSK.2009.19.6.344
  4. A. L. Efros and B. I. Shklovskii, Phys. Stat. Sol. (B), 76, 475(1976) https://doi.org/10.1002/pssb.2220760205
  5. D. Staufer and A. Aharrony, Tayler & Francis, London, (1972)
  6. S. Nakamura, K. Saito, G. Sawa, K. Kitagawa and A. Snarskii, Electronics A, 117, 371(1995)
  7. S. Nakamura, K. Saito, G. Sawa, K. Kitagawa and A. Snarskii, Jpn. J. Appl. Phys., 136, 5163(1997) https://doi.org/10.1143/JJAP.36.5163
  8. S. Nakamura, K. Saito, G. Sawa and K. Kitagawa, Electronic A, 118, 280(1996)
  9. S. Nakamura, K. Saito and G. Sawa, Electronics A, 119, 1335(1997)
  10. S. G. Shin, Met. and Mat. Int., 7(6), 605(2002)
  11. S. G. Shin and S. R. Lee, Met. and Mat. Int., 12(2), 137(2006) https://doi.org/10.1007/BF03027469
  12. P. Sheng, Phys. Rev. B, 21, 2180(1980) https://doi.org/10.1103/PhysRevB.21.2180
  13. S. Nakamura, T. Tomimura and G. Sawa, 1999 Ann Report Conf. on Elect. Inst. and Drelec. Plenom., II, 293(1999)

Cited by

  1. Effect of temperature on the dielectric properties of carbon black-filled polyethylene matrix composites below the percolation threshold vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0913-1
  2. The Electrical Property of Polymer Matrix Composites Added Carbon Powder vol.25, pp.12, 2015, https://doi.org/10.3740/MRSK.2015.25.12.678
  3. Change of Percolation Threshold in Carbon Powder-Filled Polystyrene Matrix Composites vol.25, pp.3, 2015, https://doi.org/10.3740/MRSK.2015.25.3.119
  4. RETRACTED ARTICLE: A Study on the percolation threshold of polyethylene matrix composites filled carbon powder vol.6, pp.2, 2010, https://doi.org/10.3365/eml.2010.06.065