DOI QR코드

DOI QR Code

An Analysis of Changes in Pan Evaporation and Climate Values Related to Actual Evaporation

증발량 관련 기후인자와 팬증발량의 변화 분석

  • Jeong, Dae-Il (Institut national de la recherche scientifique(INRS-ETE), University of Quebec) ;
  • Kang, Jae-Won (Research Fellow, Sustainable Water Resources Research Center, KICT)
  • Published : 2009.02.28

Abstract

Evaporation over the world is expected to increase owing to increase in temperature by global warming. However, pan evaporation around the world has decreased in the past few decades. This study, which has been conducted in 18 meteorological gauging stations in Korean peninsula, investigates the changes in pan evaporation and climate variables such as precipitation, temperature, relative humidity, wind speed, sunshine hours, and percentage of sunshine, which can affect evaporation processes; the changes in these variables have been recorded between 1960 and 2007. At most gauging stations, pan evaporation shows statistically significant downward trends. The relative humidity, wind speed, sunshine hours, and percentage of sunshine also show downward trends. On the other hand, precipitation and temperature show upward trends. The spatial distribution of the downward trend in sunshine hours and percentage of sunshine correspond to that of the downward trend in pan evaporation. Scatter plots imply that pan evaporation has a strong positive correlation with the sunshine hours and percentage of sunshine, while it has a negative correlation with precipitation. At the Gangneung gauging station, the open water evaporation estimated using the Penman equation does not show the significant downward trend shown by pan evaporation. This result implies that pan evaporation is not a good indicator of potential or open water evaporations during the investigation of their long-term variability. Finally, this study explains the complementary relationship between pan and actual evaporations. Decreases in the pan evaporation can act as an evidence for the ever-increasing actual evaporation.

전지구적 기온상승으로 인해 증발량이 증가할 것으로 예견되었으나, 다양한 지역에서 관측된 팬증발량은 지난 수십 년간 뚜렷한 감소추세를 나타내고 있다. 본 연구에서는 1960년부터 2007년까지 관측된 국내 18개 기상관측소의 팬증발량과, 증발에 관련된 강수량, 온도, 상대습도, 풍속, 일조시간, 일조율에 대한 변화를 분석하였다. 분석결과 팬증발량은 뚜렷한 감소현상을 나타내었으며, 강수량과 온도는 증가추세를, 상대습도, 풍속, 일조시간, 일조율은 감소추세를 나타내었다. 특히, 일조시간과 일조율의 감소추세는 팬증발량과 지역적으로 상당히 일치하고 있음을 확인하였다. 산점도를 그려 상관관계를 확인해본 결과, 일조시간과 일조율은 팬증발량과 양의 상관관계를 강하게 나타내고 있으며, 강수량의 경우는 팬증발량과는 음의 상관관계가 존재하였다. 강릉관측소 사례연구에서 Penman공식에 의해 추정된 개방된 수면에서의 증발량은 팬증발량에서 보인 것 같은 뚜렷한 하향추세가 검증되지 않아, 기존에 팬증발량 관측값으로부터 증발량을 추정하는 것은 장기적인 증발량 변화를 검토하기 위해서는 부적절함을 확인하였다. 마지막으로 팬증발량이 실제증발량과 서로 상호보완적 관계를 갖기 때문에, 팬증발량이 감소하더라도 실제증발량은 증가할 수 있음을 설명하였다.

Keywords

References

  1. 김광섭, 임태경 (2006). "1973년부터 2004년까지의 관측된 대형증발량 자료 분석." 대한토목학회지, 대한토목학회, 제26권, 제6B호, pp. 583-596
  2. 김성원, 김형수 (2007). "비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전 알고리즘 모형: 1. 모형의 이론과 적용." 한국수자원학회논문집, 한국수자원학회 제40권, 제1호, pp. 73-88 https://doi.org/10.3741/JKWRA.2007.40.1.073
  3. 노재경 (2002). "기상자료를 이용한 일 증발량 추정." 한국수자원학회 학술발표회논문집(II), 한국수자원학회, pp. 1167-1172
  4. 유승환, 최진용, 장민원 (2006). "논벼에 대한 Penman-Monteith와 FAO Modified Penman공식의 작물계수산정." 한국농공학회논문집, 한국농공학회, 제49권, 제1호, pp. 13-23 https://doi.org/10.5389/KSAE.2006.48.1.013
  5. 이길하, 오남선, 정신택 (2007). "우리나라 연안의 팬증발량 변화 양상 분석." 한국해안·해양공학회지, 한국해안·해양공학회, 제19권, 제3호, pp. 244-252
  6. 임창수 (2008). "증발산 산정방법들의 비교 - 잔디기준 작물을 중심으로." 한국수자원학회논문집, 한국수자원학회, 제41권, 제2호, pp. 212-228 https://doi.org/10.3741/JKWRA.2008.41.2.212
  7. 임혁진, 권형중, 배덕효, 김성준 (2006). "CA-Markov기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석." 한국수자원학회논문집, 한국수자원학회, 제39권, 제5호, pp. 453-466 https://doi.org/10.3741/JKWRA.2006.39.5.453
  8. 허승오, 정강호, 하상건, 김정규 (2006). "FAO Penman-Monteith 모형의 증발산량 산정에 이용되는 기상요소의 평가." 한국토양비료학회지, 한국토양비료학회, 제39권, 제5호, pp. 274-279
  9. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). “Corp evapotranspiration: guidelines for computing crop water requirements.” Irrigation and Drainage Paper 56, United Nations-Food and Agricultural Organization (FAO), Rome, Italy
  10. Brutsaert, W. and Parlange, M.B. (1998). “Hydrologic cycle explains the evaporation paradox.” Nature, Vol. 396, p. 30 https://doi.org/10.1038/23845
  11. Chattopadhyay, N. and Hulme, M. (1997). “Evaporation and potential evapotranspiration in India under conditions of recent and future climate change.” Agricultural and Forest Meteorology, Vol. 87, pp. 55-73 https://doi.org/10.1016/S0168-1923(97)00006-3
  12. Golubev, V.S., Lawrimore, J.H., Groisman, P.Y., Speranskaya, N.A., Zhuravin, S.A., Menne, M.J., Peterson, T.C., and Malone, R.W. (2001). “Evaporation changes over the contiguous United States and the former USSR: A reassessment.” Geophysical Research Letters, Vol. 28, pp. 2665-2668 https://doi.org/10.1029/2000GL012851
  13. Lawrimore, J.H. and Peterson, T.C. (2000). “Pan evaporation trends in dry and humid regions of the United States.” Journal of Hydrometeorology, Vol. 1, No. 6, pp. 543-546 https://doi.org/10.1175/1525-7541(2000)001<0543:PETIDA>2.0.CO;2
  14. Liu, B.H., Xu, M., Henderson, M., and Gong, W.G. (2004). “A spatial analysis of pan evaporation trends in China, 1955-2000.” Journal of Geophysical Research- Atmospheres, Vol. 109, D15102, DOI:10.1029/2004JD004511
  15. Liu, C.M. and Zeng, Y. (2004). “Changes of pan evaporation in the recent 40 years in the Yellow River Basin.” Water International, Vol. 29, pp. 510-516 https://doi.org/10.1080/02508060408691814
  16. Penman, H.L. (1948). “Natural evaporation from open water, bare, and grass.” Proceedings of the Royal Meteorological Society, Vol. 193A, pp. 120-146 https://doi.org/10.1098/rspa.1948.0037
  17. Roderick, M.L. and Farquhar, G.D. (2002). “The cause of decreased pan evaporation over the past 50 years.” Science, Vol. 298, pp. 1410-1411 https://doi.org/10.1126/science.1075390
  18. Roderick, M.L. and Farquhar, G.D. (2004). “Changes in Australian pan evaporation from 1970-2002.” International Journal of Climatology, Vol. 24, pp. 1077-1099 https://doi.org/10.1002/joc.1061
  19. Roderick, M.L. and Farquhar, G.D. (2005). “Changes in New Zealand pan eaporation since the 1970s.” International Journal of Climatology, Vol. 25, pp. 2031-2039 https://doi.org/10.1002/joc.1262
  20. Salas, J.D. (1993). Analysis and modeling of hydrologic time series, Chapter 19, Handbook of Hydrology, D. Maidment (ed.), McGraw-Hill, Inc., N.Y., USA
  21. Shuttleworth, W.J. (1993). “Evaporation.” in Handbook of Hydrology, Maidment D.R. (editor), McGraw-Hill Inc., New York
  22. Tebakari, T., Yoshtani, J., and Suvanpimol, C. (2005). “Time-space trend analysis in pan evaporation over kingdom of Thailand.” Journal of Hydrologic Engineering, Vol. 10, pp. 205-215 https://doi.org/10.1061/(ASCE)1084-0699(2005)10:3(205)
  23. Valiantzas, J.D. (2006). “Simplified versions for the Penman evaporation equation using routine weather data.” Journal of Hydrology, Vol. 331, pp. 690-702 https://doi.org/10.1016/j.jhydrol.2006.06.012
  24. Xu, J.Q., Haginoya, S., Saito, K., and Motoya, K. (2005). “Surface heat balance and pan evaporation trends in Eastern Asia in the period 1971-2000.” Hydrological Processes, Vol. 19, pp. 2161-2186 https://doi.org/10.1002/hyp.5668

Cited by

  1. Assessment of Outgoing Longwave Radiation using COMS : Cheongmi and Sulma Catchments vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.465