Effect of Young Barley Leaf on Lipid Contents and Hepatic Lipid-Regulating Enzyme Activities in Mice Fed High-Fat Diet

보리순이 고지방을 급여한 마우스의 지질 함량과 간조직의 지질대사 관련 효소활성에 미치는 영향

  • Yang, Eun-Ju (Department of Nutrition Education, Graduate School of Education, Sunchon National University) ;
  • Cho, Young-Sook (Department of Food and Nutrition, Sunchon National University) ;
  • Choi, Myung-Sook (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Woo, Myoung-Nam (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Kim, Myung-Joo (Department of Food Science and Nutrition, Daegu Polytechnic College) ;
  • Shon, Mi-Yae (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Lee, Mi-Kyung (Department of Food and Nutrition, Sunchon National University)
  • 양은주 (순천대학교 교육대학원 영양교육) ;
  • 조영숙 (순천대학교 식품영양학과) ;
  • 최명숙 (경북대학교 식품영양학과) ;
  • 우명남 (경북대학교 식품영양학과) ;
  • 김명주 (대구산업정보대학 식품영양과) ;
  • 손미예 (경상대학교 식품영양학과) ;
  • 이미경 (순천대학교 식품영양학과)
  • Published : 2009.01.31

Abstract

This study was conducted to investigate the effects of powdered young barley leaf and its water extract on body weight and lipid metabolism in high-fat fed mice. Male mice were divided into normal group, high-fat (HF) group, high-fat group supplemented with powdered young barley leaf (HF-YBL) and high-fat group supplemented with water extract of the powdered young barley leaf (HF-WYBL). The powdered young barley leaf or its water extract was added to a standard diet based on 1% dried young barley leaf (1 g YBL/100 diet and 0.28 g WYBL/100 g diet) for 8 weeks. Supplementation of YBL and WYBL significantly reduced body weight and epididymal adipose tissue weight in high-fat fed mice. Food intake and daily energy intake were significantly lower in the YBL group than in the HF group. After 8 weeks, plasma triglyceride and cholesterol concentrations were significantly higher in the HF group than in the Normal group; however, both YBL and WYBL significantly lowered those of the high-fat fed mice. The ratio of HDL-cholesterol/total cholesterol of the YBL and WYBL groups were significantly elevated compared to that of HF group. Both YBL and WYBL significantly increased fecal excretion of triglyceride in high-fat fed mice, whereas they did not affect fecal cholesterol concentration. The triglyceride levels of liver, adipose tissue and heart were significantly lower in the YBL and WYBL groups than in the HF group. Supplementation of WYBL also lowered the kidney triglyceride and heart cholesterol concentrations compared to those of HF group. Hepatic lipid regulating enzyme activities, fatty acid synthase, HMG-CoA reductase and acyl-coenzyme A: cholesterol acyltransferase, were significantly lower in the YBL and WYBL groups than in the HF group. Accordingly, these results suggest that YBL and WYBL improve plasma and organ lipid levels partly by increasing fecal lipid excretion and inhibiting fatty acid and cholesterol biosynthesis in the liver.

본 연구는 고지방 (열량의 37%를 지방으로 대체)을 급여한 마우스의 체중과 체내 지질함량에 미치는 보리순의 영향을 규명하고자 하였다. 4주령의 ICR 마우스 (n = 32)를 1주일간 적응시킨 후 정상식이를 급여한 정상군, 고지방을 급여한 고지방대조군, 고지방-보리순분말군과 고지방-보리순열수추출물군으로 나누어 8주간 사육하였다. 보리순은 사람이 하루에 3잔의 차를 마시는 양을 고려하여 보리순 1%수준이 섭취되도록 분말과 열수추출물을 각각 식이에 첨가 조제하여 8주간 급여하였다. 식이섭취량은 보리순분말군이 고지방대조군에 비하여 유의적으로 낮았으나 보리순열수추출물은 식이섭취량에 영향을 미치지 않았다. 보리순분말과 보리순열수추출물은 고지방식이로 유도된 비만마우스의 체중을 효과적으로 낮추었으며 특히, 내장지방무게의 대표적 지표인 부고환지방조직 무게를 유적으로 낮추었다. 이는 보리순이 식이섭취 억제에 의존적으로 체중감소 효과를 나타내지 않음을 제시한다. 혈장의 총 콜레스테롤 함량은 보리순분말과 열수추출물 급여시 고지방 대조군에 비해 각각 25%와 20%의 감소효과를 보였으며 중성지질 함량은 보리순분말군과 열수추출물군 모두 28%와 43%의 유의적인 감소를 보였다. 또한 보리순분말과 보리순열수추출물은 혈장 중의 총 콜레스테롤에 대한 HDL-콜레스테롤 비(HTR)를 고지방대조군에 비하여 유의적으로 높였다. 간조직과 지방조직의 트리글리세리드 함량은 정상군에 비해 고지방대조군이 각각 1.3배, 1.2배의 증가를 보였으나 보리순분말과 열수추출물 급여시 모두 간조직과 지방조직의 트리글리세리드 함량이 정상군과 유사한 수준으로 개선되었다. 신장에서의 트리글리세리드 함량은 고지방식이로 증가하는 경향을 보였고 심장에서는 1.4배의 유의적인 증가를 나타내었으며, 보리순열수추출군에서만 유의적인 개선효과를 볼 수 있었다. 간조직과 신장의 콜레스테롤 함량은 실험군간에 차이가 없었으나, 심장 중의 콜레스테롤 함량은 고지방대조군이 정상군보다 유의적으로 높았다. 보리순열수추출물의 경우 심장의 콜레스테롤 함량을 유의적으로 낮추었다. 변중의 콜레스테롤 함량은 고지방 대조군이 정상군에 비하여 낮은 반면, 트리글리세리드 함량은 약 6배 높았다. 한편, 보리순말과 열수추출물 급여는 고지방 대조군에 비하여 변으로의 트리글리세리드 배설을 유의적으로 증가시켰으나 콜레스테롤 함량에는 영향을 미치지 않았다. 간조직 중 FAS활성은 정상군에 비해 고지방대조군에서 1.7배 높아진 반면, ${\beta}$-oxidation은 유의적으로 낮았다. 보리순분말과 열수추출물은 지방산 합성효소의 활성을 정상군 수준으로 개선하였으나 지방산 산화에는 영향을 미치지 않았다. 콜레스테롤 합성에 관련하는 HMG-CoA reductase와 ACAT 활성은 각각 정상군보다 고지방대조군에서 각각 2.1배, 1.5배씩 높았으나 보리순분말과 열수추출물 급여시 유의적으로 낮았다. 이와 같이 보리순분말과 열수추출물은 고지방 식이로 비만을 유도한 마우스의 간조직에서 지방산과 콜레스테롤 합성을 저해함으로써 지질개선에 효과적인 것으로 나타났다.

Keywords

References

  1. Newman RK, Newman CW. Barley as a food grain. Cereal Foods World 1991; 36: 800-805
  2. McIntosh GH, Whyte J, McArthur R, Nestel PJ. Barley and wheat foods: influence on plasma cholesterol concentrations in hypercholesterolemic men. Am J Clin Nutr 1991; 53: 1205-1209
  3. Behall KM, Scholfield DJ, Hallfrisch J. Lipids significantly reduced by diets containing barley in moderately hypercholesterolemic men. J Am Coll Nutr 2004; 23: 55-62
  4. Newman RK, Newman CW, Graham H. The hypocholesterolemic function of barley $\beta$-glucans. Cereal Foods World 1989; 34:883-886
  5. German B, Xu R, Walzem R, Kinsella JE, Knuckles B, Nakamura M, Yokoyama W. Effects of dietary fats and barley fiber on total cholesterol and lipoprotein cholesterol distribution in plasma of hamsters. Nutr Res 1996; 16: 1239-1249 https://doi.org/10.1016/0271-5317(96)00127-3
  6. Rieckhoff D, Trautwein EA, Malkki Y, Ebersdobler HF. Effects of different cereal fibers on cholesterol and bile acid metabolism in the Syrian Golden hamster. Cereal Chem 1999; 76: 788-795 https://doi.org/10.1094/CCHEM.1999.76.5.788
  7. Wilson TA, Nicolosi RJ, Delaney B, Chadwell K, Mooichandani V, Kotyla T, Ponduru S, Zheng GH, Hess R, Knutson N, Curry L, Kolberg L, Giukson M, Ostergren K. Reduced and high molecular weight barley $\beta$-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian Golden hamsters. J Nutr 2004; 134: 2617-2622
  8. Ohmori R, Iwamoto T, Tago M, Takeo T, Unno T, Itakura H, Kondo K. Antioxidant activity of various teas against free radicals and LDL oxidation. Lipids 2005; 40: 849-853 https://doi.org/10.1007/s11745-005-1447-4
  9. Jang JH, Choi HS, Cheong HS, Kang OJ. A comparison of the antioxidant activity of barley leaf tea and green tea according to leaching conditions in distilled water. Korean J Food Cookey Sci 2007; 23: 165-172
  10. Kim KT, Kim SS, Lee SH, Kim DM. The functionality of barley leaves and its application on functional foods. Food Sci Industry 2003; 36: 45-49
  11. Markham KR, Mitchell KA. The mis-identification of the major antioxidant flavonoids in young barley (Hordeum vulgare) leaves. Z Naturforsch 2003; 58: 53-56
  12. Yu YM, Chang WC, Chang CT, Hsieh CL, Tsai CE. Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes. Diabetes Metabolism 2002; 28: 107-114
  13. Yu YM, Chang WC, Liu CS, Tsai CM. Effect of young barley leaf extract and adlay on plasma lipids and LDL oxidation in hyperlipidemic smokers. Biol Pharm Bull 2004; 27: 802-805 https://doi.org/10.1248/bpb.27.802
  14. AOAC. Official methods of analysis, 16th ed., Association of official analytical chemists, Washington DC.; 1995
  15. Johansson CG, Hallmer H. Rapid enzymatic assay of insoluble and soluble dietary fiber. J Agric Food Chem 1983; 31: 476-482 https://doi.org/10.1021/jf00117a003
  16. Gutfinger T. Polyphenols in olive oils. J Am Oil Chem Soc 1981;58: 966-968 https://doi.org/10.1007/BF02659771
  17. American Institute of nutrition. Report of the American Institute of nutrition Ad Hoc committee on standards for nutritional studies. J Nutr 1977; 107: 1340-1348
  18. Muller PH. A fully enzymatic triglyceride determination. J Clin Chem Clin Biochem 1977; 15: 457-464
  19. Richmond V. Use of cholesterol oxidase for assay of total and free cholesterol in serum continuous flow analysis. Clin Chem 1976; 22: 1579-1588
  20. Folch J, Mee L, Stanley GSH. A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 1975; 226: 497-509
  21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  22. Carl MN, Lakshmana MR, Porter JW. Fatty acid synthase from rat liver. Methods in Enzymology 1975; 35: 37-44 https://doi.org/10.1016/0076-6879(75)35136-7
  23. Lazarow PB. Assay of peroxisomal $\beta$-oxidation of fatty acids. Methods in Enzymology 1981; 72: 315-319 https://doi.org/10.1016/S0076-6879(81)72021-4
  24. Shapiro DJ, Nordstrom JL, Mitschelen JJ, Rodwell VW, Schimke RT. Microassay for 3-hydroxy-3-methylglutaryl-CoA reductase in rat liver and in L-cell fibroblasts. Biochimica et Biophysica acta 1974; 370: 369-377
  25. Erickson SK, Schrewsbery MA, Brooks C, Meyer DJ. Rat liver acyl-coenzyme A: cholesterol acyltransferase: its regulation in vivo and some of properties in vitro. J Lipid Res 1980; 21: 930-941
  26. Yoo SJ. Pharmacological treatment of obesity. J Korean Endocrine Soc 2008; 23: 223-233 https://doi.org/10.3803/jkes.2008.23.4.223
  27. US Food and Drug Adminstration, Center for Food Safety and Applied Nutrition, Office of Nutritional Products, Labeling, and Dietary Supplements. Claims that can be made for conventional foods and dietary supplements. CFR 101.81. Appendix C. September 2003
  28. Jeraci JL, Lewis BA. Determination of the soluble fiber components: (1$\rightarrow$3: 1$\rightarrow$4)-$\beta$-D-glucans and pectins. Anim Feed Sci Technol 1989; 23: 15-25 https://doi.org/10.1016/0377-8401(89)90086-2
  29. Bamforth CW. Barley $\beta$-glucans: their role in malting and brewing. Brewers Digest 1982; 22: 22-27
  30. Cui SW. Cereal non-starch polysaccharide I: (1$\rightarrow$3) (1$\rightarrow$4)-$\beta$-D-glucans. In: polysaccharide gums from agricultural productsprocessing, structures and functionality. Technomic Publishing, Lancaster, PA; 2001. p.103-166
  31. Aman P, Graham H. Analysis of total and insoluble mixed-linked (1$\rightarrow$3) (1$\rightarrow$4)-$\beta$-D-glucans in barley and oats. J Agric Food Chem 1987; 35: 704-709 https://doi.org/10.1021/jf00077a016