Glucocorticoid-induced Osteoporosis: From Pathogenesis to Treatment

스테로이드 유발성 골다공증: 병인에서 치료까지

  • Jeong, Yun-Seok (Department of Endocrinology and Metabolism, Ajou University School of Medicine)
  • 정윤석 (아주대학교 의과대학 내분비대사내과학교실)
  • Published : 2009.12.31

Abstract

Glucocorticoid-induced osteoporosis (GIO) is the most common type of secondary osteoporosis. However, the mechanism responsible for GIO and the appropriate treatment for this problem remain poorly understood. The pathogenesis of GIO can be explained by a traditional model and a scientific model of bone cells. According to the traditional model, glucocorticoids decrease intestinal calcium absorption and increase urinary calcium excretion, and the negative calcium balance induces secondary hyperparathyroidism. In the more recent scientific model of bone cells, glucocorticoids stimulate osteoclast cells directly and increase osteoclast cell activity and survival during early accelerated bone loss this activity induces high bone turnover and rapid bone loss. Glucocorticoids suppress osteoblast cell activity directly and suppress osteoblast cell activity indirectly by osteoclast-mediated osteoblast recruitment during late decelerated continuous sustained bone loss. This results in low bone turnover and slow bone loss. A more detailed action mechanism of glucocorticoids in osteoblasts may include: (1) Runx2 expression, (2) PPAR gamma expression, and (3) Wnt /$\beta$-catenin signaling. Glycogen synthase kinase-3$\beta$(GSK3$\beta$) also plays a role in osteoblast apoptosis. Traditional general guidelines and life style modifications for GIO are: (1) doses of glucocorticoids as low as possible (2) duration of steroid administration as short as possible (3) topical rather than systemic glucocorticoid treatment, if possible (4) smoking cessation (5) reduction of alcohol; (6) weight -bearing exercise (7) adequate amounts of calcium and vitamin D intake (8) and the prevention of falls. Medical treatment options for GIO are sex hormones, calcitonin, bisphosphonate, and parathyroid hormone. In some studies, estrogen/progestin therapy in postmenopausal women and testosterone therapy in hypogonadal men have shown a beneficial effect on bone mineral density (BMD) of the spine. Calcitonin treatment may have the additional benefit of relieving the pain associated with vertebral fractures. Bisphosphonates reduce early accelerated bone loss, prevents bone resorption by inflammatory cytokines, and demonstrates anti-apoptotic effects on osteoblasts and osteocytes. In many studies, bisphosphonates have shown significant increase in the BMD of the spine and reduction of the risk of vertebral fractures in GIO. Parathyroid hormone (PTH) might be a better treatment option than bisphosphonate therapy, because PTH (1) targets osteoblasts, (2) increases osteoblast recruitment, activity, and survival, and (3) does not suppress osteoclasts. PTH treatment significantly increased lumbar spine BMD and total hip BMD and prevented vertebral fractures compared to alendronate therapy in patients with GIO. Future therapy targeting osteoblasts include: (1) the GSK3$\beta$ inhibitor, (2)Dickkopf antibody, (3) Sclerostin antibody.

스테로이드에 의한 골다공증 (GIO)은 이차성 골다공증의 가장 흔한 원인이다. 그러나 아직까지 그 기전은 명확하게 밝혀지지 않았으며, 치료 또한 쉽지 않다. GIO의 병인기전은 표적기관에 초점을 둔 전통적 모델과 골세포에 초점을 둔 과학적 모델이 있다. 과거의 전통적 모델에서는 스테로이드는 장에서 칼슘 흡수를 억제하고 소변으로의 칼슘 배출을 촉진하여, 이러한 음의 칼슘 균형이 이차성 부갑상선기능항진증을 일으키는 것으로 설명하고 있다. 그러나 이러한 과거 모델에 대한 반론과 문제점이 제기되고 있다. 최근의 과학적 모델에서는 스테로이드가 초기 (투여 1년 이내) 가속화된 골소실에서 파골세포를 직접적으로 자극하고, 파골세포의 활성도와 생존을 증가시켜, 골전환을 증가시키고 골소실을 촉진한다. 후기 감속화된 지속적 골소실에서는 스테로이드는 조골세포를 직접적으로 억제할 뿐만 아니라 파골세포에 의해 매개된 조골세포 동원을 간접적으로 억제한다. 이에 따라 느린 골전환 및 골소실을 유도한다. 이밖에 조골세포에 대한 스테로이드의 작용기전은 Runx2 발현, PPAR gamma 발현, Wnt /$\beta$-catenin 신호 등이 있다. 저자등은 glycogen synthase kinase-3$\beta$(GSK3$\beta$)의 역할을 최근 보고한 바 있다. GIO의 일반적 치료 지침과 생활 개선 요법으로 가능한 최소 용량의 스테로이드 사용, 짧은 기간의 스테로이드 사용,국소 스테로이드 요법, 금연, 알코올 섭취 감소, 체중부하 운동, 적절한 칼슘 섭취, 비타민 D 섭취, 낙상 예방이 있다. 약물 치료는 성호르몬 요법, 칼시토닌, 비스포스포네이트, 부갑상선호르몬 요법이 있다. 비스포스포네이트는 염증 사이토카인에 의한 골흡수를 억제하고, 조골세포와 골세포에 대한 세포사멸 억제 효과를 보인다. 이를 통해 요추의 골밀도를 증가시키고 척추골절의 위험을 감소시키는 것으로 보고되고 있다. 부갑상선호르몬은 조골세포에 대해 동원,활성화, 생존을 증가시키고, 파골세포를 억제하지 않아 비스포스포네이트보다 치료 효과가 좋을 것으로 예상된다. 부갑상선호르몬은 알렌드로네이트에 비해 요추 및 고관절 골밀도를 증가시키고, 척추골절을 감소시키는 것으로 보고되었다. 향후 가능성 있는 치료제로서 GSK3$\beta$ 억제제, Dickkopf 항체, Sclerostin 항체 등이 연구되고 있다.

Keywords

References

  1. Rubin MR, Bilezikian JP. The role of parathyroid hormone in the pathogenesis of glucocorticoidinduced osteoporosis: a re-examination of the evidence. J Clin Endocrinol Metab 2002;87:4033-41. https://doi.org/10.1210/jc.2002-012101
  2. Pearce G, Tabensky DA, Delmas PD, Baker HW, Seeman E. Corticosteroid-induced bone loss in men. J Clin Endocrinol Metab 1998;83:801-6. https://doi.org/10.1210/jc.83.3.801
  3. Weinstein RS. Glucocorticoid-induced osteoporosis. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. The ASBMR. 2008. p. 267-72.
  4. Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, et al. Promotion of osteoclast survival and antagonism of bisphosphonateinduced osteoclast apoptosis by glucocorticoids. J Clin Invest 2002;109:1041-48. https://doi.org/10.1172/JCI0214538
  5. Jia D, O'Brien CA, Stewart SA, Manolagas SC, Weinstein RS. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 2006;147:5592-9. https://doi.org/10.1210/en.2006-0459
  6. Lee WY, Baek KH, Rhee EJ, Tae HJ, Oh KW, Kang MI, et al. Impact of circulating boneresorbing cytokines on the subsequent bone loss following bone marrow transplantation. Bone Marrow Transplant 2004;34:89-94. https://doi.org/10.1038/sj.bmt.1704535
  7. Kim SY, Kim HJ. Glucocorticoid-induced osteoporosis: update. J Korean Orthop Assoc 2009; 44:151-8. https://doi.org/10.4055/jkoa.2009.44.2.151
  8. Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, et al. Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest 2006;116:2152-60. https://doi.org/10.1172/JCI28084
  9. Canalis E. Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 1996;81:3441-47. https://doi.org/10.1210/jc.81.10.3441
  10. Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 1996;16:4128- 36. https://doi.org/10.1128/MCB.16.8.4128
  11. Ohanka K, Tanabe M, Kawate H, Nawata H, Takayanagi R. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Comm 2005;329:177-81. https://doi.org/10.1016/j.bbrc.2005.01.117
  12. Smith E, Frenkel B. Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3$\beta$ -dependent and- independent manner. J Biol Chem 2005;280:2388-94. https://doi.org/10.1074/jbc.M406294200
  13. Yun SI, Yoon HY, Jeong SY, Chung YS. Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab 2009;27:140-8. https://doi.org/10.1007/s00774-008-0019-5
  14. Yun SI, Yoon HY, Chung YS. Glycogen synthase kinase-3beta regulates etoposide-induced apoptosis via Bcl-2 mediated caspase-3 activation in C3H10T1/ 2Cells. Apoptosis 2009;14:771-7. https://doi.org/10.1007/s10495-009-0348-4
  15. Dempster DW. Bone histomorphometry in glucocorticoid- induced osteoporosis. J Bone Miner Res 1989;4:137-41. https://doi.org/10.1002/jbmr.5650040202
  16. Carbonare LD, Bertoldo F, Valenti MT, Zenari S, Zanatta M, Sella S, et al. Histomorphometric analysis of glucocorticoid-induced osteoporosis. Micron 2005; 36:645-52. https://doi.org/10.1016/j.micron.2005.07.009
  17. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manologas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 1999;104:1363- 74. https://doi.org/10.1172/JCI6800
  18. Lukert BP, Johnson BE, Robinson RG. Estrogen and progesterone replacement therapy reduces glucocorticoid-induced bone loss. J Bone Miner Res 1992;7:1063-9. https://doi.org/10.1002/jbmr.5650070909
  19. Hall GM, Daniels M, Doyle DV, Spector TD. Effect of hormone replacement therapy on bone mass in rheumatoid arthritis patients treated with and without steroids. Arthritis Rheum 1994;37: 1499-505. https://doi.org/10.1002/art.1780371014
  20. Reid IR, Wattie DJ, Evans MC, Stapleton JP. Testosterone therapy in glucocorticoid-treated men. Arch Intern Med 1996;156:1173-7. https://doi.org/10.1001/archinte.156.11.1173
  21. Ringe JD, Welzel D. Salmon calcitonin in the therapy of corticoid-induced osteoporosis. Eur J Clin Pharmacol 1987;33:35-9 https://doi.org/10.1007/BF00610377
  22. Balooch G, Yao W, Ager JW, Balooch M, NallaRK, Porter AE, et al. The aminobisphos phonate risedronate preserves localized mineral and material properties of bone in the presence of glucocorticoids. Arthritis Rheum 2007;56:3726-37. https://doi.org/10.1002/art.22976
  23. Kim SD, Cho BS. Pamidronate therapy for preventing steroid-induced osteoporosis in children with nephropathy. Nephron Clin Pract 2006;102: c81-7. https://doi.org/10.1159/000089664
  24. Adachi JD, Saag KG, Delmas PD, Liberman UA, Emkey RD, Seeman E, et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 2001;44:202-11. https://doi.org/10.1002/1529-0131(200101)44:1<202::AID-ANR27>3.0.CO;2-W
  25. Wallach S, Cohen S, Reid DM, Hughes RA, Hosking DJ, Laan RF, et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif Tissue Int 2000;67:277-85. https://doi.org/10.1007/s002230001146
  26. Van Staa TP. The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Calcif Tissue Int 2006;79:129-37. https://doi.org/10.1007/s00223-006-0019-1
  27. Saag KG, Shane E, Boonen S, Marin F, Donley DW, Taylor KA, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 2007;357:2028-39. https://doi.org/10.1056/NEJMoa071408
  28. Poitkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res 2008;23:1712-21. https://doi.org/10.1359/jbmr.080617