DOI QR코드

DOI QR Code

Antioxidative Activity of Zinc-Enriched Saccharomyces cerevisiae FF-10 in In vitro Model Systems

아연-고함유 효모 Saccharomyces cerevisiae FF-10 세포액의 항산화효과

  • Published : 2009.02.28

Abstract

Zinc is an essential trace element for human and plays an important biological role in antioxidant properties. We have been reported that zinc-enriched S. cerevisiae FF-10 contained 392 mg% in the YM basal and 3,193 mg% in the YM optimal medium. Antioxidative activity of FF-10 was tested in vitro models by DPPH (${\alpha},{\alpha}'$-diphenyl-${\beta}$-picrylhydrazyl) radical scavenging activity and lipid peroxidation using linoleic acid (LA) and rat liver homogenate. DPPH radical scavenging activity was higher in the cell-free extract of FF-10 cultured in the YM optimal medium (YMOM) than that in the YM basal medium (YMBM). The inhibition activity of lipid peroxidation using rat liver homogenate was shown in the following order: BHT > YMOM > YMBM and these values were dose dependently. The lipid peroxidation of the control mixture by ferric thiocyanate and TBA methods using LA was increased rapidly as typical peroxidation curve of LA from one day and the antioxidation activity of the cell free extracts by cultivating FF-10 in the YMOM were higher than that of the YMBM. Result of this study indicate that the cell-free extracts containing a high intercellular zinc of S. cerevisiae FF-10 cultured in YMOM showed strong antioxidation capacities in DPPH radical scavenging activity and lipid peroxidation using LA and rat liver homogenate.

아연 고함유 효모 S. cerevisiae FF-10의 항산화능을 검토하기 위하여 DPPH 전자 공여능, linoleic acid을 이용한 ferric thiocyanate법과 TBA법에 의한 과산화지질 생성 정도 및 흰쥐 간 조직 생체막을 이용한 TBARS법에 의한 과산화지질 생성 정도를 측정하였다. 본 실험은 효모 생육배지인 YM 기본배지와 아연 생산량을 증대시키는 YM 최적배지에서 각각 배양된 S. cerevisiae FF-10의 세포 파쇄액의 항산화 활성을 비교하였다. DPPH 전자 공여능은 양성 대조구로 사용한 BHT에서 가장 높았고, YM 기본배지 보다는 YM 최적배지에서 배양된 FF-10 세포 파쇄액에서 항산화 활성이 높게 나타났다. 간 조직 생체막 과산화지질 생성 정도는 BHT > 최적 생산배지 > 기본배지 순으로 저해되었다. Linoleic acid를 이용한 과산화지질 생성정도는 음성 대조구에서 반응 1일째부터 급격히 증가한 후 반응종료일까지 계속 그 수준이 유지되었고, 양성 대조구인 BHT 처리구에서는 과산화지질 생성이 억제되어 높은 항산화활성이 확인되었으며, YM 기본배지 보다는 YM 최적배지에서 높은 과산화지질 생성 저해활성을 보였다. 이상의 결과에서 in vitro 항산화 실험계인 DPPH radical scavenging activity, 간 조직 생체막과 linolic acid 지방산을 이용한 ferric thiocyanate and TBARS 측정에서 항산화 활성은 양성 대조구인 BHT 보다는 낮았으나 최적배지에서 배양된 아연 고함유 효모 S. cerevisiae FF-10 균주의 세포 파쇄액에서 모두 높게 나타나 in vivo 항산화 실험계에서도 확인이 필요한 것으로 사료되어 진다.

Keywords

References

  1. Abe, N., T. Murata, and A. Hirota. 1998. Novel DPPH radical scavengers, bisorbicillinol and demethyltrichodimerol, from a fungus. Biosci. Biothecnol. Biochem. 62, 661-666 https://doi.org/10.1271/bbb.62.661
  2. Al-Saikhan, M. S., L. R. Howard, and J. C. Miller Jr. 1995. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L.). J. Food Sci. 60, 341- 343 https://doi.org/10.1111/j.1365-2621.1995.tb05668.x
  3. Baltaci, A. K., R. Mogulkoc, and A. Ozturk. 2006. Testosterone and zinc supplementation in castrated rats: Effects on plasma leptin levels and relation with LH, FSH and testosterone. Life Sci. 78, 746-752 https://doi.org/10.1016/j.lfs.2005.05.098
  4. Bao, B., A. S. Prasad, F. W. Beck, D. Snell, A. Suneja, F. H. Sarkar, N. Doshi, J. T. Fitzgerald, and P. Swerdlow. 2008. Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl. Res.152, 67-80 https://doi.org/10.1016/j.trsl.2008.06.001
  5. Bertelsen, G., C. Christophersen, P. H. Nielsen, H. L. Madsen, and P. Stadel. 1995. Chromatographic isolation of antioxidants guided by a methyl linoleate assay. J. Agric. Food Chem. 43, 1272-1275 https://doi.org/10.1021/jf00053a027
  6. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Natu. 26, 1199-1200
  7. Brand-Williams, W., M. E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28, 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  8. Cha, J. Y., J. C. Park, B. S. Jeon, Y. C. Lee, and Y. S. Cho. 2004. Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J. Microbiol. 42, 51-55
  9. Cha, J. Y., H. J. Kim, and Y. S. Cho. 2000. Effects of water- soluble extract from leaves of Morus alba and Cudrania tricuspidata on the lipid peroxidation in tissues of rats. J. Korean Soc. Food Sci. Nutr. 29, 531-536
  10. Cha, J. Y., J. S Heo, B. K. Park, and Y. S. Cho. 2008. Effect of zinc-enriched yeast supplementation on serum zinc and testosterone concentrations in ethanol feeding rats. J. Life Sci. 18, 947-951
  11. Cha, J. Y., J. S. Heo, and Y. S. Cho. 2008. Effect of zinc-enriched yeast FF-10 strain on the alcoholic hepatotoxicity in alcohol feeding rats. Food Sci. Biotechnol. 17, 1207-1213
  12. Cha, J. Y, H. J. Kim, B. S. Jun, J. C. Park, M. Ok, and Y. S. Cho. 2003. Antioxidative activities and produced condition of antioxidative substance by Bacillus sp. FF-7. J. Korean Soc. Agric. Chem. Biotechnol. 46, 165-170
  13. Cha, J. Y., J. S. Heo, J. W. Kim, S. W. Lee, and Y. S. Cho. 2008. Isolation and identification of zinc-enriched yeast Saccharomyces cerevisiae FF-10 from the tropical fruit rambutan. J. Life Sci. 18, 144-453
  14. Cha, J. Y. and Y. S. Cho. 1999. Effect of potato polyphenolics on lipid peroxidation in rats. J. Korean Soc. Food Sci. Nutr. 28, 1131-1136
  15. Cha, J. Y. and Y. S. Cho. 2001. Antioxidative activity of extracts from fruit of Cudrania tricuspiata. J. Krean Soc. Food Sci. Nutr. 30, 547-551
  16. Daz-Gmez, N. M., E. Domnech, F. Barroso, S. Castells, C. Cortabarra and A. Jimnez. 2003. The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants. Pediatrics 111, 1002-1009 https://doi.org/10.1542/peds.111.5.1002
  17. Decker, E. and H. Faraji. 1990. Inhibition of lipid oxidation by carnosine. JAOCS 67, 650-652 https://doi.org/10.1007/BF02540416
  18. Farmer, E. H., A. Bloomfield, A. Sundralingan, and D. A. Sutton. 1942. The couse and mechanism of autoxidation reactions in olefinic and polyolefinic substances, including rubber. Trans Faraday Soc. 38, 348-356 https://doi.org/10.1039/tf9423800348
  19. Goel, A., V. Dani, and D. K. Dhawan. 2005. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem. Biol. Interact 156, 131-140 https://doi.org/10.1016/j.cbi.2005.08.004
  20. Halliwell, B. and J. M. C. Gutteridge. 1990. Role of free radicals and catalyticmetal ions in human disease: an overview. Methods in Enzymol. 186, 1-85 https://doi.org/10.1016/0076-6879(90)86093-B
  21. Ho, E. and B. Ames. 2003. Zinc deficiency induces DNA damage and compromises DNA repair signal pathways in C6 glioma cells. J. Nutr. 133, (Supple) 203E-282E
  22. Kato, F., I. Nakazato, A. Murata, S. Okamoto, and Y. Yone. 1986. Utilization of waste fish treatment with microorganisms. Part II. Use of waste fish from large scale production of fermented fish meal and its feed efficiency. Nippon Nogeikagaku Kaishi 60, 287-293 https://doi.org/10.1271/nogeikagaku1924.60.287
  23. Kenko Eiyo Joho Kenky-Kai. 1999. Sixth Revised Recommended Daily Allowances and Dietary Refernce Intake. Daiichi Shuppan, Tokyo, Japan
  24. Kim, W. G., J. P. Kim, and I. D. Yoo. 1996. Benzastatins A, B, C, and D: new free radical scavengers from Streptomyces nitrosporeus 30643. II. Structural determination. J. Antibiotics 49, 26-30 https://doi.org/10.7164/antibiotics.49.26
  25. Kinosita, M., N. Hory, K. Aida, T. Sugawara, and M. Ohnish. 2007. Prevention of melanin formation by yeast cerebroside in B16 melanoma cells. J. Oleo Sci. 56, 645-648 https://doi.org/10.5650/jos.56.645
  26. Kumar, N., R. P. Verma, L. P. Singh, V. P. Varshney, and R. S. Dass. 2006. Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bas Taurus) bulls. Reprod. Nutr. Dev. 46, 663-675 https://doi.org/10.1051/rnd:2006041
  27. Lee, C. H., J. Y. Cha, H. J. Lee, Y. C. Lee, Y. L. Choi, and Y. S. Cho. 2005. The antioxidative activity of glutathioneenriched extract from Saccharomyces cerevisiae FF-8 in vitro model system. J. Life Sci. 15, 819-825 https://doi.org/10.5352/JLS.2005.15.5.819
  28. Lee, S., W. G. Kim, E. S. Kim, I. J. Ryoo, H. K. Lee, J. N. Kim, S. H. Jung, and I. D. Yoo. 2005. Synthesis and melanin biosynthesis inhibitory activity of (±)-terrein produced by Penicillium sp. 20135. Bioorg. Med. Chem. Lett 15, 471-473 https://doi.org/10.1016/j.bmcl.2004.10.057
  29. Maia, R., F. Debora, D. Slivia, and C. Nestor. 2007. Copper- and zinc-enriched mycellium of Agricus blazei Murrill: Bioaccumulation and bioavailability. J. Med. Food 10, 175-183 https://doi.org/10.1089/jmf.2005.064
  30. Mungan, A. G., M. Can, S. Açikgöz, E. Eştürk, and C. Altinyazar. 2006. Lipid peroxidation and homocysteine levels in Behçet's disease. Clin. Chem. Lab. Med. 44, 1115-1118
  31. Murakami, M. and T. Hirano. 2008. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 99, 1515-1522 https://doi.org/10.1111/j.1349-7006.2008.00854.x
  32. Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  33. Pacifici, R. E. and K. J. Davies. 1991. Protein, lipid, and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontol. 37, 166-180 https://doi.org/10.1159/000213257
  34. Powell, S. 2000. The antioxidant properties of zinc. J. Nutr. 130, 1447S-1454S
  35. Prasad, A. S., B. Bao, F. W. Beck, O. Kucuk, and F. H. Sarkar. 2004. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 37, 1182-1190 https://doi.org/10.1016/j.freeradbiomed.2004.07.007
  36. Rashid, M. H., F. Kato, and A. Murata. 1992. Effect of microorganism on the peroxidation of lipid and fatty acid composition of fermented fish meal. Biosci. Biotechnol. Biochem. 56, 1058-1061 https://doi.org/10.1271/bbb.56.1058
  37. Sandstead, H. H. 1995. Is zinc deficiency a public health problem? Nutr. 11, 87-92
  38. Shon, M. H., J. Y. Cha, C. H. Lee, S. H. Park, and Y. S. Cho. 2007. Protective effect of administrated glutathioneenriched Saccharomyces cerevisiae FF-8 against carbon tetrachloride (CCl4)-induced hepatotoxicity and oxidative stress in rats. Food Sci. Biochenol. 16, 967-974
  39. Tallman, D. L. and C. G. Taylor. 2003. Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6J mice. J. Nutr. Biochem. 14, 17-23 https://doi.org/10.1016/S0955-2863(02)00228-0
  40. Xin, Z., K. S. Song, and M. R. Kim. 2004. Antioxidant activity of salad vegetables grown in Korean. J. Food Sci. Nutr. 9, 289-294 https://doi.org/10.3746/jfn.2004.9.4.289

Cited by

  1. Antioxidative Activity and Chemical Characteristics of Leaf and Fruit Extracts from Thuja orientalis vol.21, pp.5, 2011, https://doi.org/10.5352/JLS.2011.21.5.746