Functional Expression of Candida antarctica Lipase A in Pichia a pastoris and Escherichia coli

Pichia pastoris와 Escherichia coli를 이용한 Candida antarctica Lipase A의 기능적 발현

  • Park, Hye-Jung (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University)
  • Published : 2009.08.29

Abstract

Candida Antarctica lipase A (CalA) has been used because of its suitability in industrial applications. CalA has unique features capable to accept tertiary and sterically hindered alcohols among many hydrolases. CalA gene was cloned and constructed in expression vector such as pColdIII/CalA and $pPICZ{\alpha}A$/CalA. The gene encoding pColdIII/CalA was functionally expressed in the cytoplasm of Escherichia coli $Origami^{TM}$ B (DE3) cells. The plasmid $pPICZ{\alpha}A$/CalA linearized by BstX I was integrated into 5'AOX1 region of the chromosomal DNA and was functionally expressed in the methyl atrophic yeast Pichia pastoris. Expressed CalA in P. pastoris (0.7 Unit/mL) showed 35 times higher activity than that in E. coli expression system (0.02 Unit/mL).

본 연구에서는 Candida antarctica로부터 genomic DNA을 추출하여 lipase A(CalA) 유전자를 PCR 증폭하였고, 재조합 pColdIII/CalA, $pPICZ{\alpha}A$/CalA, $pPICZ{\alpha}A$/CalA$his{\times}6$을 구축하였다. 재조합 CalA 유전자의 기능적 발현을 위해 최적화된 시스템을 구축하고자 Escherichia coli와 Pichia pastoris 시스템에서 각각 수행하여 비교, 분석하였다. SDS PAGE gel을 통해 CalA의 발현의 여부 및 발현양을 확인하였고, pNPP를 기질로 한 가수분해 반응을 통해 활성을 측정하였다. E. coli 발현 시스템은 형질전환 방법이 간단하고, 미생물의 성장 속도가 빠르다는 장점을 갖지만 CalA의 활성이 0.02 Unit/ml으로 비교적 낮았으며 세포질 (cytoplasm)에서 발현되므로 비목적 단백질과의 분리 및 정제과정이 필요하다. 재조합 $pPICZ{\alpha}A$/CalA을 P. pastoris 시스템에서 발현한 경우 높은 발현양 뿐만 아니라 분비작용으로 인해 고순도 발현이 용이하였고, 활성 또한 약 0.7 Unit/ml으로 가장 높았다. 결론적으로 CalA의 기능적 발현을 위해 P. pastoris 시스템을 구축하는 것이 가장 적합함을 확인하였다.

Keywords

References

  1. Svendsen, A. (2000), Lipase protein engineering, Biochim. Biophys. Act. 1543, 223-238 https://doi.org/10.1016/S0167-4838(00)00239-9
  2. Schmid, R. D. and R. Verger (1998), Lipases: interfacial enzymes with attractive applications, angew. Chem. Int. Ed. 37, 1608-1633 https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V
  3. Krishna, S. H., M. Persson, and U. T. Bomschεuεr (2002), Enantioselective transεstεrification of a tertiary alcoh이 by lipase A from Candida antarctica, Tetrahed.: Asym. 13, 2693-2696 https://doi.org/10.1016/S0957-4166(02)00739-5
  4. Pfeffer, J., M. Rusnak, C. E. Hansen, R. B. Rhlid, R. D. Schmid, and S. C. Maurer (2007), Functional expression of lipase A from Candida antarctica in Escherichia coli : A prerequisite for high-throughput screening and directed evolution, J. Mol. Catal. 45, 62-67 https://doi.org/10.1016/j.molcatb.2006.11.006
  5. Daly, R. and Milton T. W. Heam (2005), Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production, J. Mol. Recognit. 18, 119-138 https://doi.org/10.1002/jmr.687
  6. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey (2005), Heterologous protein production using the Pichia pastoris expression system, Yeast 22, 249-270 https://doi.org/10.1002/yea.1208
  7. Pfeffer, J., S. Richter, J. Nieveler, C. E. Hansen, R. B. Rhlid, R. D. Schmid, and M. Rusnak (2006), High yield expression of Lipase A from Cαndida antarctica in the methylotrophic yeast Pichia pastorisand its purification and characterisation, Appl. Microbiol. Biotechnol. 72, 931-938 https://doi.org/10.1007/s00253-006-0400-z
  8. Chen, J., Y. Q. Zhang, C. Q. Zhao, A. N. Li, Q. X. Zhou, and D. C. Li (2007), Cloning of a gene encoding thermostable glucoamylase from Chaetomium thermophilum and its expression in Pichia pastoris, J. Appl. Microbiol. 103, 2277-2284 https://doi.org/10.1111/j.1365-2672.2007.03475.x
  9. Wang, H., S. Yin, X. Hou, and H. Xing (2005), Highlevel secretion expression of human ScFv against Botulinum neurotoxin A in Pichia pαstoris, Microbiol. in China 32, 50-53
  10. Cristea, M., A. Engstrom, C. Su, L. Homsten, and E H. Oliw (2005), Expression of manganese lipoxygenase in Pichia pastoris and site-directed mutagenesis of putative metal ligands, Arch. Biochem. Biophys. 434, 201-211 https://doi.org/10.1016/j.abb.2004.10.026
  11. Cregg, J. M., S. V. Thomas, and C. R. William (1993), Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technol. 11, 905-910 https://doi.org/10.1038/nbt0893-905
  12. http://www.ebi.ac.uk/Tools/clustalw2
  13. Hoegh, I., S. Patkar, T. Halkier, and M. T. Hansen (1995), Two lipases from Candida antarctica: cloning and expression in Aspergillus oryzae. Can. J. Bot. 73, 869-875 https://doi.org/10.1139/b95-333
  14. Ericsson, D. J., A. Kasrayan, P. Johanssoκ T. Bergfors, A. G. Sandstrom, J. E. Backvall, and S. L. Mowbray (2008), X-ray structure of Candida antarcticalipase A shows a novel lid structure and a likely mode of interfacial activation, J. Mol. Biol. 376(1), 109-19 https://doi.org/10.1016/j.jmb.2007.10.079
  15. Xia, B., J. P. Etchegaray, and M. Inouye (2001), N onsense mutations in cspA cause ribosome trapping leading to complete growth inhibition and cell death at low temperature in Escherichia coli, J. Biol. Chem. 276, 35581-35588 https://doi.org/10.1074/jbc.M103871200
  16. Stephanie, J., E. Evguenieva-Hackenberg, and G. Klug (2004), Temperature-dependent processing of the cspA mRNA in Rhodobacter capsulatus, Microbiol. 150, 687-695 https://doi.org/10.1099/mic.0.26666-0
  17. Hohenblum, H., B. Gasser, M. Maurer, N. Borth, and D. Mattanovich (2004), Effects of gene dosage, promoters and substrates on unfolded protein stress of recombinant Pichia pastoris. Biotechnol. Bioeng. 85, 367-375 https://doi.org/10.1002/bit.10904