Enriched Geochemical and Sr-Nd isotopic characteristics of Middle Triassic Plutonic Rocks in Hudongri, Chuncheon: Derivation from Enriched Mantle

춘천 후동리 일대에 분포하는 중기 트라이아스기 관입암의 부화된 지화학 및 Sr-Nd 동위원소 특성: 부화된 맨틀로부터 기원

  • Published : 2009.09.30

Abstract

The intrusive rocks in the Hudongri area, Chuncheon located in central Gyeonggi Massif consist of gabbroic diorite and diorite. K-Ar age of biotite separated from diorite sample records middle Triassic age of 228 Ma. The intrusives are characterized by enrichment of MgO, Ni and Cr as well as large ion lithophile elements such as Sa and Sr, which is indicative of derivation of magma from enriched mantle. The intrusives also have enriched Sr-Nd isotopic compositions, which appear to result from a long-term incompatible element enriched mantle source with an effect of crustal contamination. Occurrence of abundant hydrous minerals such as amphiboles and biotite rather than anhydrous minerals of pyroxene and olivine in mafic intrusive as well as being plotted in volcanic arc field in tectonic environment discrimination diagram indicate the mafic-intermediate intrusives in the Hudongri area, Chuncheon were derived from mantle material enriched by subduction.

경기육괴 중앙부 춘천 후동리 일대에 분포하는 관입암은 고철질의 조성을 가지는 반려암질 섬록암과 중성의 섬록암으로 이루어져 있다. 섬록암으로부터 분리한 흑운모에 대해 측정한 K-Ar 연령은 228Ma로서 중기 트라이아스기에 해당한다. 이 암석들은 Ba와 Sr과 같은 친석원소뿐만 아니라 MgO, Ni 및 Cr과 같은 호정원소들도 부화된 지화학적 특성을 보여주며, 이것은 연구지역의 관입암이 부화된 맨틀암의 부분용융으로부터 기원한 것임을 지시한다. 또한 연구지역의 관입암은 매우 부화된 Sr과 Nd 동위원소 조성을 보이는데 이러한 부화된 값은 지각물질의 혼염에 의한 가능성과 함께 오랜 기간에 걸쳐 불호정원소가 부화된 맨틀로부터 기원한 것에 기인한다고 보인다. 고철질암임에도 불구하고 주요 유색광물로 함수광물인 각섬석과 흑운모가 산출되는 점과 이 암석들이 조구조판별도에서 화산호 환경에 도시되는 점은 이 암석들이 섭입에 의해 영향을 받은 부화된 맨틀 물질로부터 기원하였음을 지시한다.

Keywords

References

  1. 김옥준, 김서운, 유병화, 박병권, 1974, 한국지질도(1:50,000), 가평도폭 및 설명서, 국립지질조사소, 26p
  2. 박영록, 2008, 양평에 분포하는 감섬석 반려암과 High Ba-Sr 화강암류의 성인: 지화학 및 Sr-Nd 동위원소 특성. 2007 추계지질과학연합학술대회 초록집, 163p
  3. Bea, F., Fershtater, G.B. and Montero, M.P., 1997, Generation and evolution of subduction-related batholiths of the central Urals: constraints on the P-T history of the Uralian Orogen. Tectonophysics, 276, 103-116 https://doi.org/10.1016/S0040-1951(97)00051-6
  4. Benito, R., Lopez-Ruiz, J., Cebria, J.M., Hertogen, M., DobIas, M, Oyarzun, R. and Demaiffe, D., 1999, Sr and o isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos, 46, 773-802 https://doi.org/10.1016/S0024-4937(99)00003-1
  5. Boynton, W.V., 1984, Geochemistry of the rare earth elements:meteorite studies. In: Henderson P. (ed), Rare earth element geochemistry. Elsevier, 63-114
  6. Chappell, B.W and White, A..J.R., 1974, Two contrasting granite types. Pacific Geology, 8, 173-174
  7. Chen, B., Jahn, B.-M. and Zhai, M, 2003, Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, North China craton, and implications for Archean lithosphere thinning. Journal of Geological Society, London, 160, 963-970 https://doi.org/10.1144/0016-764902-129
  8. Cho, M., 2001, A continuation of Chinese ultrahigh-pressure belt in Korea: evidence from ion microprobe U-Pb zircon ages. Gondwana Research, 4, 708 https://doi.org/10.1016/S1342-937X(05)70505-0
  9. Choi, S.G., Rajesh, V.J., Seo, J, Park, J.W, Oh, C.W. Park, S.J. and Kim, S.W, 2009, Petrology, geochemistry and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Are, 18, 266-281 https://doi.org/10.1111/j.1440-1738.2008.00622.x
  10. Davidson, J.P., 1987, Crustal contamination versus subduction zone enrichment: example from the Lesser Antilles and implications for mantle source composition of Island arc volcanic rocks. Geochim. Cosmochim. Acta., 51, 2185-2198 https://doi.org/10.1016/0016-7037(87)90268-7
  11. Elliot, T, Plank, T and Zindler, A, 1997, Element transport from slab to volcanic front at the Mariana Arc. J. Geophys. Res., 102, 14991-15019 https://doi.org/10.1029/97JB00788
  12. Fershtater, G.B., Bea, F, Montero, P. and Scarrow, J., 2004, Hornblende gabbro in the Urals: Types, Geochemistry, and Petrogenesis, Geochemistry international, 42, 610-629
  13. Gibson, S.A., Thompson, R.N., Leonardos, O.H., Dickin, A.P. and Mitchell, J.G, 1995, The late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. Jour. of Petrology, 36, 189-229 https://doi.org/10.1093/petrology/36.1.189
  14. Grove, T.L., Parman, S.W and Bowring, S.A, 2000, The role of an H$_{2}$O-rich fluid in the generation of primitive basaltic andesites from the Mt. Shasta Region, N. California. Cont. Mineral. Petrol., 142, 375-396
  15. Irvine, T.N. and Baragar, W.R.A, 1971, A guide to the chemical classification of the common volcanic rocks. Can. Jour. Earth Sci., 8, 523-548 https://doi.org/10.1139/e71-055
  16. Jahn, B.M., Wu, F.Y, Lo, C.H. and Tsai, C.H., 1999, Crustmantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol., 157, 119-146 https://doi.org/10.1016/S0009-2541(98)00197-1
  17. Kepezhinskas, P., McDermott, F. and Defant, M.J., 1997, Trace element and Sr-Nd-Pb isotope constraints on a three component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta, 61, 577-600 https://doi.org/10.1016/S0016-7037(96)00349-3
  18. Kim, S.W, Oh, C.W, Williams, I.S., Rubbato, D:, Ryu, I.C, Rajesh, V.J., Kim, C.-B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Block, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377 https://doi.org/10.1016/j.lithos.2006.03.050
  19. Kim, S.W, Williams, I.S., Kwon, S. Oh, C.W, 2008, SHRIMP zircon geochronology and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea: implications for Paleoproterozoic to Mesozoic tectonic links between the korean Peninsula and eastern China. Precambrian Research, 162, 475-497 https://doi.org/10.1016/j.precamres.2007.10.006
  20. Lee, S.R., Cho, M., Yi, K.-W and Stem, R, 2000, Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. Journal of Geology, 108, 729-738 https://doi.org/10.1086/317951
  21. Lee, S.R. and Cho, M., 2003, Metamorphic and tectonic evolution of the Hwacheon granulite complex, central Korea: composite P-T path resulting from two distinct crustal-thickening events. Journal of Petrology, 44, 197-225 https://doi.org/10.1093/petrology/44.2.197
  22. Le Maitre, R.W, Bateman, P., Dudek, A, Keller, J., Lameyre Le Bas, M.J., Sabine, P.A, Schmid, R, Sorensen, H., Streckeisen, A, Woolley, A.R and Zanettin, B., 1989, A classification of igneous rocks and glossary of terms. Blackwell, Oxford
  23. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643 https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  24. McCulloch, M.T. and Gamble, J.A, 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374 https://doi.org/10.1016/0012-821X(91)90029-H
  25. McDonough, W.F., Sun, S., Ringwood, A.E., Jagoutz, E. and Hofinann, A.W, 1991, K, Rb, and Cs in the earth and moon and the evolution of the earth's mantle. Geochim. Cosmochim. Acta, Ross Taylor Symposium volume
  26. McDougall, I. and Harrison, T.M., 1999, Geochronology and thermochronology by the $^{40}$Ar/$^{39}$Ar method. Oxford University Press, New York
  27. McKenzie, D.P., 1989, Some remarks on the movement of small melt fractions in the mantle. Earth and Planetary Science Letters, 95, 53-72 https://doi.org/10.1016/0012-821X(89)90167-2
  28. Middlemost, E.A.K., 1994, Naming materials in the magma/igneous rock system. Earth-Sci Rev., 37, 215-224 https://doi.org/10.1016/0012-8252(94)90029-9
  29. Nakamura N., 1974, Determination of REE, Ba, Fe, Mg, and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757-775 https://doi.org/10.1016/0016-7037(74)90149-5
  30. Oh, C.W, Kim, S.W. and Williams, I.S., 2006, Late Permian HT spinel granulite in Korea and its tectonic implications for the collision between the North and South China Blocks; Lithos, 92, 557-575 https://doi.org/10.1016/j.lithos.2006.03.051
  31. Oh, C.W., Kim, S.W., Choi, S.G, Zhai, M., Guo, J. and Sajeev, K., 2005, First finding of eclogite facies metamorphic event in South Korea and its correlation with the Dabie-Sulu Collision Belt in China. Journal of Geology, 113, 226-232 https://doi.org/10.1086/427671
  32. Oh, C.W, 2006, A new concept on tectonic correlation between Korea, China, and Japan: histories from the Late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61 https://doi.org/10.1016/j.gr.2005.06.001
  33. Pawley, A.R. and Holloway, J.R, 1993, Water source for subduction zone volcanism: New experimental constraints. Science, 260, 664-667 https://doi.org/10.1126/science.260.5108.664
  34. Pearce J.A., 1982, Trace element characteristics of lavas from destructive plate boundaries. In Andesites (ed. R.S. Thorpe), Wiley, Chichester, 525-548
  35. Pearce J.A, Harris, N.B.W and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 2, 956-983
  36. Rapp, R.P. and Watson, E.B., 1995, Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891-931 https://doi.org/10.1093/petrology/36.4.891
  37. Rogers, N.W, James, D., Kelley, S.P. and De Mulder, M., 1998, The generation of potassic lavas from the eastern Virunga province, Rwanda. Journal of Petrology, 39, 1223-1247 https://doi.org/10.1093/petrology/39.6.1223
  38. Rudnick, J.J.W. and Gao, S., 2003, Composition of the continental crust. In The Crust, Vol. 3, Treatise on Geochemistry(ed. H.D. Holland and K.K. Turekian), Elsevier, Oxford, 1-64
  39. Rushmer, T., 1991, Partial melting of two amphibolites:contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology, 107, 41-59 https://doi.org/10.1007/BF00311184
  40. Shand, P., Gaskarth, J.W., Thirlwall, M.E and Rock, N.M., 1994, Late Caledonian lamprophyre dyke swarms of South-Eastern Scoland. Mineralogy and Petrology, 51, 277-298 https://doi.org/10.1007/BF01159733
  41. Tamey, J. and Jones, C.E., 1994, Trace element geochemistry of orogenic igneous rocks and crustal growth models. Jour. Geol. Soc. London, 151, 855-868 https://doi.org/10.1144/gsjgs.151.5.0855
  42. Thompson, R.N., Leat, P.T., Dickin, A.P., Morrison, M.A., Hendry, G.L. and Gibson, S.A., 1989, Strongly potassic mafic magmas from lithospheric mantle sources during continental rxtension and heating: evidence from Miocene minettes of northwest Colorado, U.S.A. Earth Planetary DScience Letters, 98, 139-153 https://doi.org/10.1016/0012-821X(90)90055-3
  43. Tsuchiya, N., Suzuki, S., Kimura, J.-I. and Kagami, H., 2005, Evidence for slab melt/mantle reaction: Petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos, 79, 179-206 https://doi.org/10.1016/j.lithos.2004.04.053
  44. Williams, I.S., Cho, D.-L. and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256 https://doi.org/10.1016/j.lithos.2008.10.017
  45. Wood, D.A., Joron, J.L., Treuil, M., Norry, M. and Tarney, J., 1979, Elemental and Sr isotopie variations in basic lavas from Iceland and the surrounding ocean floor. Contrib. Mineral. Petrol., 70, 319-339 https://doi.org/10.1007/BF00375360
  46. Wood, D.A., Tamey, J. and Weaver, B.L., 1981, Trace element variations in Atlantic ocean basalts and Proterozoic dykes from Northwest Scotland: their bearing upon the nature and geochemical evolution of the upper mantle. Tectonophysics, 75, 91-112 https://doi.org/10.1016/0040-1951(81)90211-0
  47. Yang, J.-H., Wu, E-Y, Wilde, S.A. and Lin, X.-M., 2007, Petrogenesis of late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 242, 155-175 https://doi.org/10.1016/j.chemgeo.2007.03.007