DOI QR코드

DOI QR Code

Evaluation of Antibody Immobilization Methods for Detection of Salmonella using Impedimetric Biosensor

살모넬라균 검출을 위한 임피던스 바이오센서의 항체 고정화 방법 평가

  • Kim, Gi-Young (KSAM, National Academy of Agricultural Science, RDA) ;
  • Moon, Ji-Hea (Dept. of Food and Nutrition, Hanyang University) ;
  • Om, Ae-Son (Dept. of Food and Nutrition, Hanyang University) ;
  • Yang, Gil-Mo (National Academy of Agricultural Science, RDA) ;
  • Moh, Chang-Yeon (National Academy of Agricultural Science, RDA) ;
  • Kang, Suk-Won (National Academy of Agricultural Science, RDA) ;
  • Cho, Han-Keun (Dept. of Biosystems Engineering, Chungbuk National University)
  • Published : 2009.08.25

Abstract

Conventional methods for pathogen detection and identification are labor-intensive and take several days to complete. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella typhimurium. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on either avidin-biotin binding or self assembled monolayer (SAM) on the surface of the IME to form an active sensing layer. To evaluate effect of antibody immobilization methods on sensitivity of the sensor, detection limit of the biosensor was analyzed with Salmonella samples innoculated in phosphate buffered saline (PBS) or food extract. The impedimetric biosensor based on SAM immobilization method produced better detection limit. The biosensor could detect 107 CFU/mL of Salmonella in pork meat extract. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

Keywords

References

  1. Babacan, S., P. Pivarnik, S. Letcher and A. Rand. 2002. Piezoelectric flow injection analysis biosensor for the detection of Salmonella typhimuium. Journal of Food Science 67(1):314-320 https://doi.org/10.1111/j.1365-2621.2002.tb11403.x
  2. Guan, J. G., Y. Q. Miao and Q. J. Zhang. 2004. Review: Impedimetric biosensors. Journal of Bioscience and Bioengineering 97(4):219-226 https://doi.org/10.1016/S1389-1723(04)70195-4
  3. Kim, E. H., H. K. Cho, K. S. Kyung and G. Kim. 2009. Detection of the fungicide Iprovalicarb residues using a surface plasmon resonance biosensor. Journal of Biosystems Engineering 34(1):50-56. (In Korean) https://doi.org/10.5307/JBE.2009.34.1.050
  4. Kim, G. and K. H. Choi. 2006. Development of a fiber-optic biosensor for the detection of Listeria monocytogenes. Journal of Biosystems Engineering 31(2):128-134. (In Korean)
  5. Kim, G. H., A. G. Rand and S. V. Letcher. 2003. Impedance characterization of a piezoelectric immunosensor part II: Salmonella typhimurium detection using magnetic enhancement. Biosensors and Bioelectronics 18:91-99. https://doi.org/10.1016/S0956-5663(02)00143-4
  6. Lazcka, O., F. J. D. Campo and F. X. Munz. 2006. Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22(7):1205-1217 https://doi.org/10.1016/j.bios.2006.06.036
  7. Park, D. H., H. J. Ryu, H. S. Kang, H. S. Park and M. H. Kim. 2003. Construction of biosensor using electrochemical reaction of nitrate reductase, nitrite oxidase and ammonium oxidase isolated from nitrate reducer, nitrite oxidizer and ammonium oxidizer. Journal of the Korean Society for Environmental Anlaysis 6(1):35-40. (In Korean)
  8. Radke, S. M. and E. C. Alocilja. 2005. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics 20:1662-1667 https://doi.org/10.1016/j.bios.2004.07.021
  9. Yang, L., C. Ruan and Y. Li. 2003. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance. Biosensors and Bioelectronics 19(5):495-502 https://doi.org/10.1016/S0956-5663(03)00229-X
  10. Yang, L., Y. Li, C. L. Griffis and M. G. Johnson. 2004. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and Bioelectronics 19(10):1139-1147 https://doi.org/10.1016/j.bios.2003.10.009

Cited by

  1. Detection of Pathogenic Salmonella with a Composite Quantum Dot vol.35, pp.6, 2010, https://doi.org/10.5307/JBE.2010.35.6.458
  2. Rapid Detection Kit for Salmonella typhimurium vol.36, pp.2, 2011, https://doi.org/10.5307/JBE.2011.36.2.140
  3. Improvement of the detection limit of rapid detection kit for Salmonella Typhimurium using image analysis system vol.39, pp.3, 2012, https://doi.org/10.7744/cnujas.2012.39.3.421
  4. The selection of basic platform for improving the sensitivity of neutravidin rapid detection kit vol.39, pp.4, 2012, https://doi.org/10.7744/cnujas.2012.39.4.613