Removal of impurities from the rutenium containing scraps by nitric acid leaching

함(含)루테늄 스크랩으로부터 질산침출(窒酸浸出)에 의한 불순물(不純物) 제거(除去)

  • Ahn, Jae-Woo (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Chung, Dong-Wha (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Seo, Jae-Seong (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Lee, Ki-Woong (Sungeel Hightec Co., LTD) ;
  • Yi, Kang-Myung (Sungeel Hightec Co., LTD) ;
  • Lee, Jae-Hoon (Incheon Technology Service Center, Korea Institute of Industrial Technology)
  • Published : 2009.10.27

Abstract

A recovery process of Ruthenium from waste electronic scrap has been investigated by means of nitric acid leaching as a part of development for scrap pretreatment process to obtaining an optimum conditions for removal of removing various impurities such as Pb, Bi, Zn, Al, Bi, Ag Fe, Co, Zr, Si. From the experiments, 90% of Pb leached with 250 g/l pulp density in 10-15% nitric acid. Leaching behavior of Ba was also similar to that of the Pb, but those of other metal impurities, such as Zn, Al, Bi, Ag, Fe, Co, Zr, showed different behavior, in which the dissolution rate increased as the concentration of nitric acid in solution is increased up to the 10% $HNO_3$ in solution and then it was constant above 10% $HNO_3$ concentrations. Meanwhile, the dissolution of Ru in $HNO_3$ solution was less then 100ppm, and that the total content of Ru in undissolved residue scrap was resulted in an increment of 50%.

폐스크랩으로부터 Ru을 회수하기 위한 전처리 공정으로 질산을 침출제로 사용하여 Pb, Ba, Zn, Al, Bi, Ag Fe, Co, Zr, Si 등의 침출 거동을 고찰하고, 이들 성분들을 제거 할 수 있는 최적조건을 도출하고자 하였다. 실험결과 고액농도 250 g/L에서 10-15% 질산 용액으로 약 90%의 Pb를 침출시켜 제거할 수 있었다. 또한 Ba의 경우도 Pb와 유사한 침출 거동을 나타내었으며, 기타 금속원소들 중 Zn, Al, Bi, Ag, Fe, Co, Zr은 질산농도 증가에 따라 침출율이 증가하나 질산농도가 10% 이상에서는 침출율이 거의 일정하였다. 한편, Ru의 경우는 약 100 ppm 이하로 침출율이 미미하였고, 질산침출 후 잔사중에 Ru이 50%이상으로 농축됨을 알 수 있었다.

Keywords

References

  1. R. J. Seymour and J. I. O'Farrelly, 2006: Platinum Group Metals', in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 19, Fifth edition, Wiley-Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, pp. 569-603
  2. H. Renner, 1997: Platinum Group Metals', in Handbook of Extractive Metallurgy, Edited by F. Habashi, WILEY-VCH, Germany, pp. 1275-1284
  3. Jong-Gwan Ahn, Ki-Woong Lee and Kang-Myung Yi, 2008: Application of Rutenium and Osmium, Trends in Metals & Materials Engineering, 21(6), 33-36
  4. C.W. Ammen, 1997: Recovery and Refining of Precious Metals, 2nd edition, Chapman & Hall, p244
  5. R. I. Edwards, W.A.M. te Riele, and G. J. Bernfield, 1986:Review on the Recovery of the Platinum Group Metals, in Gmelin Handbook of Inorganic Chemistry, Platinum (Technology of the Platinum Group Metals), Supp. Vol. Al (ed. G. J. K. Acres), pp.1-23, Springer, Berlin, Germany
  6. 이아름, 이승원, 이강명, 안종관, 김민석, 김동진 2009: 전해생성된 염소를 이용한 루테늄 신용해법, 한국자원리싸이클링학회 2009춘계학술발표대회 발표논문집, p88-91
  7. Permelec Electrode LTD, 1984: 금속전극으로부터 루테늄을 회수하는 방법, JP59104438A2
  8. K. Gloe, P. Muhl and M. Knothe, 1990: Recovery of precious metals from electronic scrap, in particular from waste products of the thick-layer technique, Hydrometallurgy, 25, 99-110 https://doi.org/10.1016/0304-386X(90)90067-C
  9. J.R. Payne, 1995: 'Lead nitrate: a thermal solubility study' Thennochimica Acta 259, 207-213 https://doi.org/10.1016/0040-6031(95)02259-5