DOI QR코드

DOI QR Code

Optical Properties of InAs Quantum Dots Grown by Using Indium Interruption Growth Technique

Indium Interruption Growth법으로 성장한 InAs 양자점의 광학적 특성

  • Lee, Hi-Jong (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Kim, Jin-Soo (Division of Advanced Materials Engineering, Chonbuk National University)
  • Published : 2009.11.30

Abstract

We have investigated optical properties of InAs quantum dots (QDs) grown on GaAs (100) substrate by molecular beam epitaxy, by means of photoluminescence (PL) and time-resolved PL spectroscopy. InAs QDs were grown by using In interruption growth technique, in which the In flux was periodically interrupted by a closed In shutter during InAs QDs growth. The shutter of In source was opened for 1 s and then closed for 0, 9, 19, 29, or 39 s. This growth sequence was repeated 30 times during QDs growth. For each sample, the total amount of In contributing to the growth was the same (30 s) but total growth time was varied during the InAs growth. As the In interruption time is increased from 0 to 19 s, the PL peak position of the QDs is red-shifted from 1096 to 1198 nm, and the PL intensity is increased. However, the PL peak is unchanged and the intensity is decreased as the In interruption time is increased further to 39 s. The PL decay times measured at the PL peak position for all the InAs QDs are independent on the QD growth conditions and showed about 1 ns. The red-shift of PL peak and the increase of PL intensity can be explained due to increased QD size and the enhancement in the migration of In atoms using In interruption technique. These results indicated that the size and shape of InAs QDs can be controlled by using In interruption growth technique. Thus the emission wavelength of the InAs QDs on GaAs substrate can also be controlled.

분자선 에피택시 (molecular beam epitaxy: MBE)를 이용하여 GaAs (100) 기판에 Indium interruption growth법으로 성장한 InAs 양자점 (quantum dots: QDs)의 광학적 특성을 photoluminescence (PL)와 time-resolved PL (TRPL) 실험을 이용하여 분석하였다. In interruption growth법은 InAs 양자점 성장 동안 As 공급은 계속 유지하면서 셔터 (shutter)를 이용해 서 In 공급을 조절하는 방법이다. 본 연구에서는 In을 1초 동안 공급하고 셔터를 0초, 9초, 19초, 29초, 또는 39초 동안 닫아 In 공급을 차단하였으며, 공급과 차단 과정을 각 30회 반복하여 양자점을 성장하였다. In interruption 시간을 0초에서 19초까지 증가하였을 때 PL 피크는 1096 nm에서 1198 nm로 적색편이 (~100 nm)하고 PL 세기는 증가하였으나, 19초에서 39초까지 증가하였을 때 PL 스펙트럼의 변화는 없고 PL 세기는 감소하였다. 모든 양자점의 PL 소멸시간 (decay time)은 약 1 ns로 바닥상태 (ground state) PL 피크에서 가장 길게 나타났다. In interruption 시간이 19초인 시료가 가장 좋은 PL 특성과 가장 짧은 운반자 소멸시간을 나타내었다. PL 특성의 향상은 In interruption 시간동안 일정한 양의 In 원자들의 분리와 이동이 증가한 것으로 설명될 수 있다. 이러한 결과로부터 In interruption 법을 이용하여 InAs 양자점의 크기, 균일도, 조밀도 등을 조절하여 원하는 파장대의 양자점을 성장할 수 있음을 알 수 있다.

Keywords

References

  1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982) https://doi.org/10.1063/1.92959
  2. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett. 12, 230 (2000) https://doi.org/10.1109/68.826897
  3. S. G. Li, Q. Gong, Y. F. Lao, K. He, J. Li, Y. G. Zhang, S. L. Feng, and H. L. Wang, Appl. Phys. Lett. 93, 111109 (2008) https://doi.org/10.1063/1.2985900
  4. C. K. Chia, J. R. Dong, and B. K. Ng, Appl. Phys. Lett. 94, 053512 (2009) https://doi.org/10.1063/1.3079674
  5. R. Oshima, A. Takata, and Y. Okada, Appl. Phys. Lett. 93, 083111 (2008) https://doi.org/10.1063/1.2973398
  6. K. W. Kim, N. K. Cho, J. D. Song, J. I. Lee, and W. J. Choi, J. Kor. Vac. Soc. 18, 266 (2009) https://doi.org/10.5757/JKVS.2009.18.4.266
  7. D. Sreenivasan, J. E. M. Haverkort, T. J. Eijkemans, and R. Notzel, Appl. Phys. Lett. 90, 112109 (2007) https://doi.org/10.1063/1.2713803
  8. K.-H. Kim, J. H. Sim, and I.-H. Bae, J. Kor. Vac. Soc. 18, 208 (2009) https://doi.org/10.5757/JKVS.2009.18.3.208
  9. S. Barik, H. H. Tan, C. Jagadish, N. Vukmirovic, and P. Harrison, Appl. Phys. Lett. 88, 193112(2009) https://doi.org/10.1063/1.2203333
  10. J. S. Kim, D. K. Oh, P. W. Yu, J.-Y. Leem, J. I. Lee, and C. R. Lee, J. Crystal Growth 261, 38 (2004) https://doi.org/10.1016/j.jcrysgro.2003.09.017
  11. L. M. Kong, J. F. Cai, Z. Y. Wu, Z. Gong, Z. C. Niu, and Z. C. Feng, Thin Solid Films 498, 188 (2006) https://doi.org/10.1016/j.tsf.2005.07.079
  12. J. S. Kim, C.-R. Lee, and S. U. Hong, J. Crystal Growth 305, 78 (2007) https://doi.org/10.1016/j.jcrysgro.2007.03.061
  13. S. U. Hong, J. S. Kim, J. H. Lee, H.-S. Kwack, W.-S. Han, and D. K. Oh, J. Crystal Growth 286, 18 (2006) https://doi.org/10.1016/j.jcrysgro.2005.09.048
  14. A. Convertino, L. Cerri, G. Leo, and S. Viticoli, J. Crystal Growth 261, 458 (2004) https://doi.org/10.1016/j.jcrysgro.2003.09.034
  15. M. Gurioil, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, Phys. Rev. B 44, 3115 (1991) https://doi.org/10.1103/PhysRevB.44.3115

Cited by

  1. Luminescence Properties of InAs/GaAs Quantum Dots Grown by MEE Method vol.22, pp.2, 2013, https://doi.org/10.5757/JKVS.2013.22.2.92
  2. Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.442
  3. Effect of Growth Temperature on the Luminescence Properties of InP/GaP Short-Period Superlattice Structures vol.24, pp.1, 2015, https://doi.org/10.5757/ASCT.2015.24.1.22
  4. Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots vol.21, pp.6, 2012, https://doi.org/10.5757/JKVS.2012.21.6.342
  5. Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time vol.22, pp.2, 2013, https://doi.org/10.5757/JKVS.2013.22.2.86