Antioxidant and Antiproliferative Activities of Methanolic Extract from Celandine

  • Published : 2009.02.28

Abstract

Celandine (Chelidonium majus, family Papaveraceae) is an herb used extensively in traditional Korean medicine. To investigate its antioxidant and antiproliferative activities, the methanolic extract of celandine was introduced. The antioxidant properties of the extract were tested using various in vitro systems, including hydroxyl radical scavenging assay, DNA damage protection assay, 1,1-diphenyll-2-2-pricylhydrazyl (DPPH) free radical scavenging activity, metal chelating activity, and reducing power assay. The extract exhibited stronger antioxidant activity ($IC_{50}=7.92{\mu}g/mL$) against hydroxyl radicals in the Fenton system than butylated hydroxyanisole ($IC_{50}=51.46{\mu}g/mL$) and $\alpha$-tocopherol ($IC_{50}=67.48{\mu}g/mL$). Likewise, damage to the plasmid pBR 322 induced by hydroxyl radicals was found to be protected by the extract at a concentration of $400{\mu}g/mL$. Cellular proliferation and the induction of apoptosis were also examined by a cellular proliferation assay, flow cytometry, and mRNA expression analysis. Taken together, the extract significantly inhibited the growth of HT-29 cells in a concentration- and time-dependent manner, and gradually increased both the proportion of apoptotic cells and the expression of caspase-3. Overall, our research suggests that celandine possesses antioxidant and antiproliferative properties.

Keywords

References

  1. Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathol. Int. 49: 91-102 (1999) https://doi.org/10.1046/j.1440-1827.1999.00829.x
  2. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424: 83-95 (1999) https://doi.org/10.1016/S0027-5107(99)00010-X
  3. Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative disease. Nutr. Neurosci. 5: 291-309 (2002) https://doi.org/10.1080/1028415021000033767
  4. Halliwell B. Antioxidant characterization: Methodology and mechanism. Biochem. Pharmacol. 49: 1341-1348 (1995) https://doi.org/10.1016/0006-2952(95)00088-H
  5. Gerber M, Boutron-Ruault MC, Hercberg S, Riboli E, Scalbert A, Siess MH. Food and cancer: State of the art about the protective effect of fruits and vegetables. Bull. Cancer 89: 293-312 (2002)
  6. Cai YZ, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74: 2157-2184 (2004) https://doi.org/10.1016/j.lfs.2003.09.047
  7. Mathew S, Abraham TE. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem. Toxicol. 44: 198-206 (2006) https://doi.org/10.1016/j.fct.2005.06.013
  8. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur. J. Cancer 37: 4-66 (2001) https://doi.org/10.1016/S0959-8049(01)00267-2
  9. Rogers LR. Cerebrovascular complications in cancer patients. Neurol. Clin. 21: 167-192 (2003) https://doi.org/10.1016/S0733-8619(02)00066-X
  10. Vijayalaxmi B, Thomas CR, Reiter RJ, Herman TS. Melatonin:From basic research to cancer treatment clinics. J. Clin. Oncol. 20:2575-2601 (2002) https://doi.org/10.1200/JCO.2002.11.004
  11. Kinghorn DA. Pharmacognosy in the 21st century. J. Pharm. Pharmacol. 53: 135-148 (2001) https://doi.org/10.1211/0022357011775334
  12. Lee JY, Hwang WI, Lim ST. Antioxidant and anticancer activities of organic extracts from Platycodon grandiflorum A. De Candolle roots. J. Ethnopharmacol. 93: 409-415 (2004) https://doi.org/10.1016/j.jep.2004.04.017
  13. Green DR. Apoptotic pathways: The roads to ruin. Cell 94: 695-698 (1998) https://doi.org/10.1016/S0092-8674(00)81728-6
  14. Colombo ML, Bosisio E. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol. Res. 33: 127-134 (1996) https://doi.org/10.1006/phrs.1996.0019
  15. Lenfeld J, Kroutil M, Marsalek E, Slavik J, Preininger Y, Simanek V. Anti-inflammatory activity of quaternary benzophenanthridine alkaloids from Chelidonium majus. Planta Med. 43: 161-165 (1981) https://doi.org/10.1055/s-2007-971493
  16. Lee J, Shon MY, Jang DS, Ha TJ, Hwang SW, Nam SH, Seo EK, Park KH, Yang MS. Cytotoxic isoquinoline alkaloids from Chelidonium majus var. asiaticum. Agric. Chem. Biotechnol. 48:198-201 (2005)
  17. Chung SK, Osawa T. Hydroxy radical scavengers from white mustard (Sinapis alba). Food Sci. Biotechnol. 7: 209-213 (1998)
  18. Kilani S, Ammar RB, Bouhlel I, Abdelwahed A, Hayder N, Mahmoud A, Ghedira K, Chekir-Ghedira L. Investigation of extracts from (Tunisian) Cyperus rotundus as antimutagens and radical scavengers. Environ. Toxicol. Pharm. 20: 478-484 (2005) https://doi.org/10.1016/j.etap.2005.05.012
  19. Lu MJ, Chen C. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 41: 130-137 (2008) https://doi.org/10.1016/j.foodres.2007.10.012
  20. Guo J, Wang MH. Antioxidant and antidiabetic activities of Ulmus davidiana extracts. Food Sci. Biotechnol. 16: 55-61 (2007)
  21. Breborowicz A. Free radicals in peritoneal dialysis: Agents of damage? Periton. Dialysis Int. 12: 194-198 (1992)
  22. Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39: 1529-1542 (1998)
  23. Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J. Toxicol. Env. Health 40: 391-404 (1993) https://doi.org/10.1080/15287399309531806
  24. Siriwardhana N, Lee KW, Jeon YJ, Kim SH, Haw JW. Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci. Technol. Int. 9: 339-346 (2003) https://doi.org/10.1177/1082013203039014
  25. Li XL, Zhou AG Evaluation of the antioxidant effects of polysaccharides extracted from Lycium barbarum. Med. Chem. Res. 15: 471-482 (2007) https://doi.org/10.1007/s00044-007-9002-2
  26. Duh PD. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free-radical and active oxygen. J. Am. Oil. Chem. Soc. 75: 455-461 (1998) https://doi.org/10.1007/s11746-998-0248-8
  27. Ramanathan M. Flow cytometry applications in pharmacodynamics and drug delivery. Pharm. Res. 14: 1106-1114 (1997) https://doi.org/10.1023/A:1012178001348
  28. Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J. Immunol. Methods 243: 167-190 (2000) https://doi.org/10.1016/S0022-1759(00)00233-7
  29. Cohen GM. Caspases: The executioners of apoptosis. Biochem. J. 326: 1-16 (1997) https://doi.org/10.1042/bj3260001
  30. Cejas P, Casado E, Belda-Iniesta C, De Castro J, Espinosa E, Redondo A, Sereno M, Garcia-Cabezas MA, Vara JA, Dominguez-Caceres A, Perona R, Gonzalez-Baron MA. Implications of oxidative stress and cell membrane lipid peroxidation in human cancer. Cancer Cause Control 15: 707-719 (2004) https://doi.org/10.1023/B:CACO.0000036189.61607.52
  31. Zeisel SH. Antioxidants suppress apoptosis. J. Nutr. 134: 3179S-3180S (2004) https://doi.org/10.1093/jn/134.11.3179S