DOI QR코드

DOI QR Code

Antibiotic Resistance Mechanisms of Escherichia coli Isolates from Urinary Specimens

요 검체에서 분리된 대장균의 항균제 내성 기전

Song, Sung-Wook;Lee, Eun-Young;Koh, Eun-Mi;Ha, Ho-Sung;Jeong, Ho-Joong;Bae, Il-Kwon;Jeong, Seok-Hoon
송성욱;이은영;고은미;하호성;정호중;배일권;정석훈

  • Published : 20090200

Abstract

Background : This study was designed to characterize urinary isolates of Escherichia coli that produce extended-spectrum $\beta$-lactamases (ESBLs) and to determine the prevalence of other antimicrobial resistance genes. Methods : A total of 264 non-duplicate clinical isolates of E. coli were recovered from urine specimens in a tertiary-care hospital in Busan in 2005. Antimicrobial susceptibility was determined by disk diffusion and agar dilution methods, ESBL production was confirmed using the double-disk synergy (DDS) test, and antimicrobial resistance genes were detected by direct sequencing of PCR amplification products. E. coli isolates were classified into four phylogenetic biotypes according to the presence of chuA, yjaA, and TSPE4. Results : DDS testing detected ESBLs in 27 (10.2%) of the 264 isolates. The most common type of ESBL was CTX-M-15 (N=14), followed by CTX-M-3 (N=8) and CTX-M-14 (N=6). All of the ESBLproducing isolates were resistant to ciprofloxacin. PCR experiments detected genes encoding DHA-1 and CMY-10 AmpC $\beta$-lactamases in one and two isolates, respectively. Also isolated were 5 isolates harboring 16S rRNA methylases, 2 isolates harboring Qnr, and 19 isolates harboring AAC(6')-Ib-cr. Most ESBL-producing isolates clustered within phylogenetic groups B2 (N=14) and D (N=7). Conclusion : CTX-M enzymes were the dominant type of ESBLs in urinary isolates of E. coli, and ESBL-producing isolates frequently contained other antimicrobial resistance genes. More than half of the urinary E. coli isolates harboring CTX-M enzymes were within the phylogenetic group B2.

배경 : 본 연구에서는 요 검체에서 분리된 extended-spectrum $\beta$-lactamase (ESBL) 생성 Escherichia coli의 내성 특성을 조사하고, 이들 ESBL 생성 균주의 다른 항균제 내성 유전자의 보유율을 알아보았다. 방법 : 2005년 국내 3차 병원의 요 검체에서 분리된 E. coli 264주를 대상으로 하였다. 항균제 감수성은 디스크 확산법 및 한천희석법으로 시험하였으며, double-disk synergy (DDS)법을 사용하여 ESBL 생성을 확인하였다. PCR 및 염기서열 분석으로 항균제 내성의 유전형을 분석하였다. 균주의 chuA, yjaA 및 TSPE4 보유 여부에 따라 계통발생학적 분류를 하였다. 결과 : 총 264주 중 27주가 DDS 양성이었으며, CTX-M-15 (N=14), CTX-M-3 (N=8), CTX-M-14 (N=6)의 순으로 ESBL이 검출되었으며, ESBL 생성 균주 모두는 ciprofloxacin에 내성이었다. ESBL 생성 균주 중 각 1주와 2주에서 DHA-1과 CMY-10 AmpC $\beta$-lactamase, 5주에서 16S rRNA methylase, 2주에서 Qnr, 19주에서 AAC(6')-Ib-cr를 생성하였다. ESBL 생성 균주 대부분은 계통발생학적 B2군(N=14, 51.9%) 혹은 D군(N=7, 25.9%)에 속하였다. 결론 : 요 검체에서 분리된 E. coli가 생성하는 ESBL의 다수는 CTX-M형이었으며, ESBL 생성 균주 중 타 계열의 항균제에 내성을 부여하는 유전자를 지닌 경우가 흔하였다. CTX-M형 ESBL 생성 균주의 반 이상이 계통발생학적 B2군에 속하였다.

Keywords

References

  1. Piatti G, Mannini A, Balistreri M, Schito AM. Virulence factors inurinary Escherichia coli strains: phylogenetic background and quinoloneand fluoroquinolone resistance. J Clin Microbiol 2008;46:480-7 https://doi.org/10.1128/JCM.01488-07
  2. Bonnet R. Growing group of extended-spectrum β-lactamases: theCTX-M enzymes. Antimicrob Agents Chemother 2004;48:1-14 https://doi.org/10.1128/AAC.48.1.1-14.2004
  3. Kim J, Lim YM, Jeong YS, Seol SY. Occurrence of CTX-M-3, CTXM-15, CTX-M-14, and CTX-M-9 extended-spectrum $\beta$-lactamasesin Enterobacteriaceae clinical isolates in Korea. Antimicrob AgentsChemother 2005;49:1572-5 https://doi.org/10.1128/AAC.49.4.1572-1575.2005
  4. Rossolini GM, D'Andrea MM, Mugnaioli C. The spread of CTX-Mtypeextended-spectrum $\beta$-lactamases. Clin Microbiol Infect 2008;14(S):33-41 https://doi.org/10.1111/j.1469-0691.2007.01867.x
  5. Bae IK, Lee YN, Jeong SH, Lee K, Yong D, Lee J, et al. Emergence of CTX-M-12, PER-1 and OXA-30 $\beta$-lactamase-producing Klebsiellapneumoniae. Korean J Clin Microbiol 2006;9:102-9. (배일권, 이유내,정석훈, 이경원, 용동은, 이종욱 등. CTX-M-12, PER-1 및 OXA-30 β-Lactamase 생성 Klebsiella pneumoniae의출현. 대한임상미생물학회지2006;9:102-9.)
  6. 6. Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type$\beta$-lactamases. Antimicrob Agents Chemother 2002;46:1-11 https://doi.org/10.1128/AAC.46.1.1-11.2002
  7. Lee K, Lee M, Shin JH, Lee MH, Kang SH, Park AJ, et al. Prevalenceof plasmid-mediated AmpC $\beta$-lactamases in Escherichia coli and Klebsiellapneumoniae in Korea. Microb Drug Resist 2006;12:44-9 https://doi.org/10.1089/mdr.2006.12.44
  8. Hooper DC. Mechanisms of fluoroquinolone resistance. Drug ResistUpdat 1999;2:38-55 https://doi.org/10.1054/drup.1998.0068
  9. Herzer PJ, Inouye S, Inouye M, Whittam TS. Phylogenetic distributionof branched RNA-linked multicopy single-stranded DNA amongnatural isolates of Escherichia coli. J Bacteriol 1990;172:6175-81 https://doi.org/10.1128/jb.172.11.6175-6181.1990
  10. Jeong SH, Bae IK, Lee JH, Sohn SG, Kang GH, Jeon GJ, et al. Molecularcharacterization of extended-spectrum beta-lactamases producedby clinical isolates of Klebsiella pneumoniae and Escherichia colifrom a Korean nationwide survey. J Clin Microbiol 2004;42:2902-6 https://doi.org/10.1128/JCM.42.7.2902-2906.2004
  11. Jeong JY, Yoon HJ, Kim ES, Lee Y, Choi SH, Kim NJ, et al. Detectionof qnr in clinical isolates of Escherichia coli from Korea. AntimicrobAgents Chemother 2005;49:2522-4 https://doi.org/10.1128/AAC.49.6.2522-2524.2005
  12. Jeong SH, Bae IK, Kwon SB, Lee JH, Jung HI, Song JS, et al. Investigation of extended-spectrum $\beta$-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Lett ApplMicrobiol 2004;39:41-7 https://doi.org/10.1111/j.1472-765X.2004.01537.x
  13. Magnet S and Blanchard JS. Molecular insights into aminoglycosideaction and resistance. Chem Rev 2005;105:477-98 https://doi.org/10.1021/cr0301088
  14. Doi Y and Arakawa Y. 16S ribosomal RNA methylation: emergingresistance mechanism against aminoglycosides. Clin Infect Dis 2007;45:88-94 https://doi.org/10.1086/518605
  15. Baudry PJ, Nichol K, DeCorby M, Mataseje L, Mulvey MR, HobanDJ, et al. Comparison of antimicrobial resistance profiles amongextended-spectrum $\beta$-lactamase-producing and acquired AmpC $\beta$-lactamase-producing Escherichia coli isolates from Canadian intensivecare units. Antimicrob Agents Chemother 2008;52:1846-9 https://doi.org/10.1128/AAC.01176-07
  16. Clinical and Laboratory Standards Institute. Performance standardsfor antimicrobial susceptibility testing; seventeenth informationalsupplement: Approved Standard M100-S17, Wayne, PA: ClinicalLaboratory Standards Institute, 2007
  17. Sambrook J, Fritsch EF, et al. eds. Molecular cloning: a laboratorymanual. 2nd ed. NY: Cold Spring Harbor Laboratory Press, 1989
  18. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. Disseminationof SHV-12 and CTX-M-type extended-spectrum beta-lactamasesamong clinical isolates of Escherichia coli and Klebsiella pneumoniaeand emergence of GES-3 in Korea. J Antimicrob Chemother2005;56:698-702 https://doi.org/10.1093/jac/dki324
  19. Song W, Kim JS, Kim HS, Yong D, Jeong SH, Park MJ, et al. Increasingtrend in the prevalence of plasmid-mediated AmpC beta-lactamasesin Enterobacteriaceae lacking chromosomal ampC gene at aKorean university hospital from 2002 to 2004. Diagn Microbiol InfectDis 2006;55:219-24 https://doi.org/10.1016/j.diagmicrobio.2006.01.012
  20. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. MultiplexPCR for detection of plasmid-mediated quinolone resistance qnrgenes in ESBL-producing enterobacterial isolates. J AntimicrobChemother 2007;60:394-7 https://doi.org/10.1093/jac/dkm204
  21. Fihman V, Lartigue MF, Jacquier H, Meunier F, Schnepf N, RaskineL, et al. Appearance of aac(6')-Ib-cr gene among extended-spectrumbeta-lactamase-producing Enterobacteriaceae in a French hospital.J Infect 2008;56:454-9 https://doi.org/10.1016/j.jinf.2008.03.010
  22. Fritsche TR, Castanheira M, Miller GH, Jones RN, Armstrong ES.Detection ofmethyltransferases conferring high-level resistance toaminoglycosides in Enterobacteriaceae from Europe, North America,and Latin America. Antimicrob Agents Chemother 2008;52:1843-5 https://doi.org/10.1128/AAC.01477-07
  23. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determinationof the Escherichia coli phylogenetic group. Appl Environ Microbiol2000;66:4555-8 https://doi.org/10.1128/AEM.66.10.4555-4558.2000
  24. Akram M, Shahid M, Khan AU. Etiology and antibiotic resistancepatterns of community-acquired urinary tract infections in J N M CHospital Aligarh, India. Ann Clin Microbiol Antimicrob 2007;6:4-10 https://doi.org/10.1186/1476-0711-6-4
  25. Mazzei T, Cassetta MI, Fallani S, Arrigucci S, Novelli A. Pharmacokineticand pharmacodynamic aspects of antimicrobial agents for the treatment of uncomplicated urinary tract infections. Int JAntimicrob Agents 2006;28(S):S35-41 https://doi.org/10.1016/j.ijantimicag.2006.05.019
  26. Ko CS, Sung JY, Koo SH, Kwon GC, Shin SY, Park JW. Prevalence of Extended-Spectrum beta-lactamases in Escherichia coli and Klebsiellapneumoniae from Daejeon. Korean J Lab Med 2007;27:344-50.(고지선, 성지연, 구선회, 권계철, 신소연, 박종우. 대전지역에서 분리된Escherichia coli와 Klebsiella pneumoniae의 Extended-spectrum $\beta$-lactamase생성현황. 대한진단검사의학회지 2007;27:344-50.)
  27. Hong SG, Kim S, Jeong SH, Chang CL, Cho SR, Ahn JY, et al. Prevalence and diversity of extended-spectrum $\beta$-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean JClin Microbiol 2003;6:149-55. (홍성근, 김선주, 정석훈, 장철훈, 조성란,안지영 등. 국내에서 분리된 Extended-Spectrum $\beta$-Lactamase 생성Escherichia coli와 Klebsiella pneumoniae의 빈도 및 유형. 대한임상미생물학회지 2003;6:149-55.)
  28. Pitout JD, Nordmann P, Laupland KB, Poirel L. Emergence of Enterobacteriaceaeproducing extended-spectrum $\beta$-lactamases (ESBLs) inthe community. J Antimicrob Chemother 2005;56:52-9 https://doi.org/10.1093/jac/dki166
  29. Johnson JR, Delavari P, Kuskowski M, Stell AL. Phylogenetic distributionof extraintestinal virulence-associated traits in Escherichiacoli. J Infect Dis 2001;183:78-88 https://doi.org/10.1086/317656
  30. Johnson JR, Kuskowski MA, Owens K, Gajewski A, Winokur PL.Phylogenetic origin and virulence genotype in relation to resistanceto fluoroquinolones and/or extended-spectrum cephalosporinsand cephamycins among Escherichia coli isolates from animals andhumans. J Infect Dis 2003;188:759-68 https://doi.org/10.1086/377455
  31. Pitout JD, Laupland KB, Church DL, Menard ML, Johnson JR. Virulencefactors of Escherichia coli isolates that produce CTX-M-typeextended-spectrum $\beta$-lactamases. Antimicrob Agents Chemother2005;49:4667-70 https://doi.org/10.1128/AAC.49.11.4667-4670.2005

Cited by

  1. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin vol.60, pp.10, 2009, https://doi.org/10.1099/jmm.0.033993-0
  2. Bactericidal activity of Musca domestica cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli vol.95, pp.4, 2012, https://doi.org/10.1007/s00253-011-3793-2
  3. Prevalence and characteristics of rmtB and qepA in Escherichia coli isolated from diseased animals in China vol.4, pp.None, 2013, https://doi.org/10.3389/fmicb.2013.00198
  4. Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings vol.33, pp.4, 2014, https://doi.org/10.1007/s10096-013-1983-9
  5. Characterization of Human Uropathogenic ESBL-ProducingEscherichia coliin the Czech Republic: Spread of CTX-M-27-Producing Strains in a University Hospital vol.20, pp.6, 2014, https://doi.org/10.1089/mdr.2014.0013
  6. Characterization of CTX-M-14- and CTX-M-15-Producing Escherichia coli and Klebsiella pneumoniae Isolates from Urine Specimens in a Tertiary-Care Hospital vol.24, pp.6, 2009, https://doi.org/10.4014/jmb.1306.06036
  7. 충청지역에서 분리된 사람 유래 대장균 및 닭 유래 대장균의 항균제 내성 및 MLST를 이용한 유전형의 분포 조사 vol.47, pp.2, 2009, https://doi.org/10.15324/kjcls.2015.47.2.71
  8. Characteristics of the Molecular Epidemiology of CTX-M-Producing Escherichia coli Isolated from a Tertiary Hospital in Daejeon, Korea vol.26, pp.9, 2016, https://doi.org/10.4014/jmb.1603.03063
  9. 충청지역에 위치한 일개의 대학병원에서 분리된 CTX-M-14형 ESBL 생성 대장균을 대상으로 PMQR 유전자 빈도조사 vol.48, pp.3, 2009, https://doi.org/10.15324/kjcls.2016.48.3.210
  10. Comparison of Fluoroquinolone Resistance Determinants in Uropathogenic Escherichia coli between 2 Time Periods of 1989 and 2010-2014 at Gangwon Province in Korea vol.26, pp.2, 2020, https://doi.org/10.15616/bsl.2020.26.2.120