DOI QR코드

DOI QR Code

Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination

Lim, Jae-Won;Lee, Jeong-Min;Yun, Seok-Min;Park, Byung-Jae;Lee, Young-Seak

  • Published : 20090000

Abstract

The surface of polyacrylonitrile (PAN) membranes was modified by oxyfluorination with various conditions to improve its wettability. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. The properties and functional groups on the surface of PAN membranes were investigated by contact angle, SEM, ATR-IR and XPS. And permeability of PAN membranes was compared by permeating pure water flux through membrane surface under 100,150 and 200 kPa pressure. Oxyfluorination introduced oxygen contained functional groups such as the carboxylic acid groups that help increment of wettability on the surface of PAN membrane. Water flux ofoxyfluorinated PAN UF membrane increased 20% at pure water permeation pressure 200 kPa compared to that of untreated PAN UF membrane.

Keywords

References

  1. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,London, 1996, p. 22
  2. W. Han, H.P. Gregor, E.M. Pearce, J. Appl. Polym. Sci. 77 (2000) 1600 https://doi.org/10.1002/1097-4628(20000815)77:7<1600::AID-APP21>3.0.CO;2-9
  3. E.R. Cornelissen, T.V.D. Boomgaard, H. Strathmann, J. Membr. Sci. 138 (1998) 283
  4. M. Jeffery, H.D. Robert, J. Membr. Sci. 116 (1996) 47 https://doi.org/10.1016/0376-7388(96)00017-8
  5. F.R. Alain, L. Gerard, F. Jacques, G. Alain, Ind. Eng. Chem. Res. 42 (2003) 5900 https://doi.org/10.1021/ie030157a
  6. Y.H. Wan, R. Ghosh, Z.F. Cui, Desalination 144 (2002) 301 https://doi.org/10.1016/S0011-9164(02)00332-6
  7. M. Ulbricht, H. Matuschewski, A. Oechel, H.G. Hicke, J. Membr. Sci. 115 (1996) 31 https://doi.org/10.1016/0376-7388(95)00264-2
  8. J. Pieracci, J.V. Crivello, G. Belfort, J. Membr. Sci. 156 (1999) 223 https://doi.org/10.1016/S0376-7388(98)00347-0
  9. L. Na, L. Zhongzhou, X. Shuguang, J. Membr. Sci. 169 (2000) 17 https://doi.org/10.1016/S0376-7388(99)00327-0
  10. M.L. Steen, L. Hymasa, E.D. Havey, N.E. Capps, D.G. Castner, E.R. Fisher, J. Membr.Sci. 188 (2001) 97 https://doi.org/10.1016/S0376-7388(01)00375-1
  11. J. Frahn, G. Malsch, H.H. Schwarz, J. Mater. Process. Technol. 277 (2003) 143
  12. M. Ulbricht, G. Belfort, J. Membr. Sci. 111 (1996) 193 https://doi.org/10.1016/0376-7388(95)00207-3
  13. L.E.S. Brink, S.J.G. Elbers, T. Robbertsen, P. Both, J. Membr. Sci. 76 (1993) 281 https://doi.org/10.1016/0376-7388(93)85225-L
  14. H. Chen, G. Belfort, J. Appl. Polym. Sci. 72 (1999) 1699 https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1699::AID-APP6>3.0.CO;2-9
  15. D.E. Suk, G. Chowdhury, T. Matsuura, R.M. Narbaitz, P. Santerre, G. Pleizier, Y.Deslandes, Macromolecules 35 (2002) 3017 https://doi.org/10.1021/ma011205a
  16. A. Hamwi, H. Alvergnat, S. Bonnamy, F. Beguin, Carbon 35 (1997) 723 https://doi.org/10.1016/S0008-6223(97)00013-4
  17. A. Tressaud, T. Shirasaki, G. Nanse, E. Papirer, Carbon 40 (2002) 217 https://doi.org/10.1016/S0008-6223(01)00177-4
  18. F.J. Du Toit, R.D. Sanderson, W.J. Engelbrecht, J.B. Wagener, J. Fluor. Chem. 74 (1995) 43 https://doi.org/10.1016/0022-1139(94)03218-O
  19. F.J. Du Toit, R.D. Sanderson, Fluor. J. Chem. 98 (1999) 107 https://doi.org/10.1016/S0022-1139(99)00091-3
  20. S.J. Park, S.Y. Song, J.S. Shin, J.M. Rhee, J. Colloid Interface Sci. 283 (2005) 190 https://doi.org/10.1016/j.jcis.2004.02.094
  21. (a) B.K. Lee, Y.S. Lee, Y.B. Chong, J.B. Choi, J.S. Rho, J. Ind. Eng. Chem. 9 (2003) 426; (b) S.W. Woo, M.Y. Song, J.S. Rho, Y.S. Lee, J. Ind. Eng. Chem. 11 (2005) 55
  22. J. Qin, T.S. Chung, J. Membr. Sci. 157 (1999) 35 https://doi.org/10.1016/S0376-7388(98)00361-5
  23. J.M. Lee, J.W. Kim, J.S. Lim, T.J. Kim, S.D. Kim, S.J. Park, Y.S. Lee, Carbon Sci. 8 (2007)120
  24. Y.S. Lee, J. Fluor. Chem. 128 (2007) 392 https://doi.org/10.1016/j.jfluchem.2006.11.014
  25. A.P. Kharitonove, Yu.L. Moskvin, Appl. Energy: Russian J. Fuel Power Heat Syst. 34(1996) 55
  26. Fitky 0.7.4 User Manual, Unipress Co. Ltd, USA
  27. M. Bryjak, I. Gancarz, G. Pozniak, W. Tylus, J. Membr. Sci. 38 (2002) 717
  28. H. Fabienne, L.-M. Joelle, D.J. Roger, G. Leon, G. Jean, Appl. Surf. Sci. 142 (1999) 574 https://doi.org/10.1016/S0169-4332(98)00702-8
  29. J.M. Lee, S.J. Kim, J.W. Kim, P.H. Kang, Y.C. Nho, Y.S. Lee, J. Ind, Eng. Chem 15 (2009)66 https://doi.org/10.1016/j.jiec.2008.08.010
  30. S.M. Yun, J.W. Kim, M.J. Jung, Y.C. Nho, P.H. Kang, Y.S. Lee, Carbon Lett. 8 (2007)292 https://doi.org/10.5714/CL.2007.8.4.292
  31. C.U. Pittman, W. Jiang, Z.R. Yue, S. Gardner, L. Wang, H. Toghiani, C.A. Leon y Leon,Carbon 37 (1999) 1797 https://doi.org/10.1016/S0008-6223(99)00048-2

Cited by

  1. Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference vol.364, pp.1, 2009, https://doi.org/10.1016/j.colsurfa.2010.05.015
  2. Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification vol.48, pp.9, 2009, https://doi.org/10.1016/j.carbon.2010.03.045
  3. pH and electro-responsive release behavior of MWCNT/PVA/PAAc composite microcapsules vol.368, pp.1, 2009, https://doi.org/10.1016/j.colsurfa.2010.07.010
  4. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam vol.45, pp.11, 2009, https://doi.org/10.1016/j.materresbull.2010.07.005
  5. Effect of thermal fluorination on the hydrogen storage capacity of multi-walled carbon nanotubes vol.36, pp.2, 2009, https://doi.org/10.1016/j.ijhydene.2010.10.024
  6. Effect of metal and metal oxide nanoparticle impregnation route on structure and liquid filtration performance of polymeric nanocomposite membranes: a comprehensive review vol.51, pp.16, 2009, https://doi.org/10.1080/19443994.2012.749055
  7. 불소화 및 초음파 수세가 폴리(에틸렌 테레프탈레이트) 필름의 표면 특성에 미치는 영향 vol.37, pp.3, 2009, https://doi.org/10.7317/pk.2013.37.3.316
  8. Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: preparation, morphology, and performance vol.20, pp.6, 2013, https://doi.org/10.1007/s10965-013-0162-0
  9. 함산소불소화법을 통한 다공성 폴리에틸렌막의 파울링현상 감소연구 vol.24, pp.6, 2009, https://doi.org/10.14579/membrane_journal.2014.24.6.431
  10. Characterization and antifouling properties of polyethylene glycol doped PAN-CAP blend membrane vol.5, pp.49, 2009, https://doi.org/10.1039/c5ra02889b
  11. 프탈로시아닌계 안료의 함산소불소화가 수분산 특성에 미치는 영향 vol.29, pp.4, 2017, https://doi.org/10.5764/tcf.2017.29.4.195
  12. PAN ultrafiltration membranes grafted with natural amino acids for improving antifouling property vol.15, pp.2, 2009, https://doi.org/10.1007/s11998-017-9995-5
  13. Polyacrylonitrile Nanoparticle-Derived Hierarchical Structure for CO2 Capture vol.6, pp.4, 2009, https://doi.org/10.1002/ente.201700649
  14. A review of nanoparticle‐enhanced membrane distillation membranes: membrane synthesis and applications in water treatment vol.94, pp.9, 2009, https://doi.org/10.1002/jctb.5977
  15. Fe/Mn oxide decorated polyacrylonitrile hollow fiber membrane as heterogeneous Fenton reactor for methylene blue decolorization vol.136, pp.46, 2009, https://doi.org/10.1002/app.48217
  16. Surface/interface nanoengineering for rechargeable Zn-air batteries vol.13, pp.4, 2009, https://doi.org/10.1039/c9ee03634b
  17. Melt-spun modified poly (styrene-co-butyl acrylate) fiber as a carrier to support manganese oxide and its application in dye wastewater decolorization vol.27, pp.22, 2009, https://doi.org/10.1007/s11356-020-09105-4
  18. Nafion® reinforced with polyacrylonitrile/ZrO2 nanofibers for direct methanol fuel cell application vol.138, pp.10, 2021, https://doi.org/10.1002/app.49978
  19. An oil‐contamination‐resistant PVP/PAN electrospinning membrane for high‐efficient oil–water mixture and emulsion separation vol.138, pp.11, 2009, https://doi.org/10.1002/app.50043
  20. Nafion reinforced with polyacrylonitrile nanofibers/zirconium-graphene oxide composite membrane for direct methanol fuel cell application vol.29, pp.1, 2009, https://doi.org/10.1007/s10965-021-02854-x