DOI QR코드

DOI QR Code

Understanding Starch Utilization in the Small Intestine of Cattle

  • Harmon, David L. (Department of Animal and Food Sciences, University of Kentucky)
  • Published : 2009.07.01

Abstract

Ruminants possess the capacity to digest very large amounts of starch. However, in many cases diets approach 60% starch and even small inefficiencies present opportunities for energetic losses. Ruminal starch digestion is typically 75-80% of starch intake. On average, 35-60% of starch entering the small intestine is degraded. Of the fraction that escapes small-intestinal digestion, 35-50% is degraded in the large intestine. The low digestibility in the large intestine and the inability to reclaim microbial cells imposes a large toll on post-ruminal digestive efficiency. Therefore, digestibility in the small intestine must be optimized. The process of starch assimilation in the ruminant is complex and remains an avenue by which increases in production efficiency can be gained. A more thorough description of these processes is needed before we can accurately predict digestion occurring in the small intestine and formulate diets to optimize site of starch digestion.

Keywords

References

  1. Bauer, M. L., D. L. Harmon, D. W. Bohnert, A. F. Branco and G. B. Huntington. 2001a. Influence of alpha-linked glucose on sodium-glucose cotransport activity along the small intestine in cattle. J. Anim. Sci. 79:1917-1924
  2. Bauer, M. L., D. L. Harmon, K. R. McLeod and G. B. Huntington. 1995. Adaptation to small intestinal starch assimilation and glucose transport in ruminants. J. Anim. Sci. 73:1828-1838 https://doi.org/10.1016/S1095-6433(01)00296-3
  3. Bauer, M. L., D. L. Harmon, K. R. McLeod and G. B. Huntington. 2001b. Influence of alpha-linked glucose on jejunal sodiumglucose co-transport activity in ruminants. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 129:577-583 https://doi.org/10.1016/S1095-6433(01)00296-3
  4. Burant, C. F., J. Takeda, E. Brot-Laroche, G. I. Bell and N. O. Davidson. 1992. Fructose transporter in human spermatozoa and small intestine is glut5. J. Biol. Chem. 267: 14523-14526 https://doi.org/10.1172/JCI119053
  5. Cheeseman, C. I. 1993. Glut2 is the transporter for fructose across the rat intestinal basolateral membrane. Gastroenterology 105: 1050-1056 https://doi.org/10.1146/annurev
  6. Chittenden, L. W., D. D. Johnson, G. E. Mitchell, Jr., and R. E. Tucker. 1984. Ovine pancreatic amylase response to form of carbohydrate. Nutr. Rep. Int. 29:1051-1060
  7. Clary, J. J., G. E. Mitchell, Jr., C. O. Little and N. W. Bradley. 1969. Pancreatic amylase activity from ruminants fed different rations. Can. J. Physiol. Pharmacol. 47:161-164 https://doi.org/10.1139/y69-027
  8. Crooker, B. A. and J. H. Clark. 1986. Preparation of brush border membrane vesicles from fresh and frozen bovine intestine for nutrient uptake studies. J. Dairy Sci. 69:58-70 https://doi.org/10.3168/jds.S0022-0302(86)80370-8
  9. Dunlop, R. H. 1972. Pathogenesis of ruminant lactic acidosis. Adv. Vet. Sci. Comp. Med. 16:259-302
  10. Ferraris, R. P., S. Yasharpour, K. C. Lloyd, R. Mirzayan and J. M. Diamond. 1990. Luminal glucose concentrations in the gut under normal conditions. Am. J. Physiol. 259: G822-G837
  11. Galand, G. 1989. Brush border membrane sucrase-isomaltase, maltase-glucoamylase and trehalase in mammals. Comparative development, effects of glucocorticoids, molecular mechanisms, and phylogenetic implications. Comp. Biochem. Physiol. B. 94:1-11 https://doi.org/10.1016/0300-9629(89)90775-5
  12. Harmon, D. L. 1993. Nutritional regulation of postruminal digestive enzymes in ruminants. J. Dairy Sci. 76:2102-2111 https://doi.org/10.3168/jds.S0022-0302(93)77545-1
  13. Harmon, D. L. and K. R. McLeod. 2001. Glucose uptake and regulation by intestinal tissues: Implications and whole-body energetics. J. Anim. Sci. 79(E. Suppl.):E59-E72 https://doi.org/10.1590/S1516-89132007000700007
  14. Hediger, M. A. and D. B. Rhoads. 1994. Molecular physiology of sodium-glucose cotransporters. Physiol. Rev. 74:993-1026
  15. Janes, A. N., T. E. C. Weekes and D. G. Armstrong. 1985. Carbohydrase activity in the pancreatic tissue and small intestine mucosa of sheep fed dried-grass or ground maizebased diets. J. Agric. Sci. Camb. 104:435-443 https://doi.org/10.1017/S0021859600044142
  16. Kellett, G. L. and E. Brot-Laroche. 2005. Apical glut2: A major pathway of intestinal sugar absorption. Diabetes 54:3056-3062 https://doi.org/10.2337/diabetes.54.10.3056
  17. Kellett, G. L. and P. A. Helliwell. 2000. The diffusive component of intestinal glucose absorption is mediated by the glucoseinduced recruitment of glut2 to the brush-border membrane. Biochem. J. 350 Pt 1:155-162 https://doi.org/10.1042/0264-6021:3500155
  18. Kreikemeier, K. K. and D. L. Harmon. 1995. Abomasal glucose, maize starch and maize dextrin infusions in cattle: Small intestinal disappearance, net portal glucose flux and ileal oligosaccharide flow. Br. J. Nutr. 73:763-772 https://doi.org/10.1079/BJN19950079
  19. Kreikemeier, K. K., D. L. Harmon, R. T. Brandt, Jr., T. B. Avery and D. E. Johnson. 1991. Small intestinal starch digestion in steers: Effect of various levels of abomasal glucose, corn starch and corn dextrin infusion on small intestinal disappearance and net glucose absorption. J. Anim. Sci. 69: 328-338
  20. Kreikemeier, K. K. 1990. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves. J. Anim. Sci. 68:2916-2929
  21. Mace, O. J., J. Affleck, N. Patel and G. L. Kellett. 2007. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical glut2. J. Physiol. 582:379-392 https://doi.org/10.1113/jphysiol.2007.130906
  22. Madara, J. L. and J. R. Pappenheimer. 1987. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membr. Biol. 100:149-164 https://doi.org/10.1007/BF02209147
  23. Mayes, R. W. and E. R. Orskov. 1974. The utilization of gelled maize starch in the small intestine of sheep. Br. J. Nutr. 32: 143-153 https://doi.org/10.1079/BJN19740064
  24. McCormick, R. J. and W. E. Stewart. 1966. Pancreatic secretion in the bovine calf. J. Dairy Sci. 50:568-571 https://doi.org/10.3168/jds.S0022-0302(67)87467-8
  25. McNeill, J. W., R. E. Tucker, G. E. Mitchell and G. T. Schelling. 1974. Maltase response to infused glucose and injected insulin. J. Anim. Sci. 39:245-246
  26. Merchen, N. R. and D. C. Church. 1988. Digestion, absorption and excretion in ruminants The ruminant animal - digestive physiology and nutrition. p 172. Prentice-Hall, Englewood Cliffs, NJ
  27. Moe, A. J., P. A. Pocius and C. E. Polan. 1985. Isolation and characterization of brush border membrane vesicles from bovine small intestine. J. Nutr. 115:1173-1179
  28. Morrill, J. L., W. E. Stewart, R. J. McCormick and H. C. Fryer. 1970. Pancreatic amylase secretion by young calves. J. Dairy Sci. 53:72-78 https://doi.org/10.3168/jds.S0022-0302(70)86150-1
  29. Nichols, B. L. 2009. Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. J. Nutr. 139:684-690 https://doi.org/10.3945/jn.108.098434
  30. Pappenheimer, J. R. 1987. Physiological regulation of transepithelial impedance in the intestinal mucosa of rats and hamsters. J. Membr. Biol. 100:137-148 https://doi.org/10.1007/BF02209146
  31. Pappenheimer, J. R. 1990. Paracellular intestinal absorption of glucose, creatinine, and mannitol in normal animals: Relation to body size. Am. J. Physiol. 259:G290-G299 https://doi.org/10.1016/0016-5085(95)90580-4
  32. Pappenheimer, J. R. and K. Z. Reiss. 1987. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membr. Biol. 100:123-136 https://doi.org/10.1007/BF02209145
  33. Quezada-Calvillo, R. et al. 2007a. Luminal substrate "Brake" On mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose. J. Pediatr. Gastroenterol. Nutr. 45: 32-43 https://doi.org/10.1097/MPG.0b013e31804216fc
  34. Quezada-Calvillo, R. et al. 2007b. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. J. Nutr. 137:1725-1733 https://doi.org/10.3945/jn.108.098434
  35. Quezada-Calvillo, R. et al. 2008. Luminal starch substrate "Brake" On maltase-glucoamylase activity is located within the glucoamylase subunit. J. Nutr. 138:685-692
  36. Richards, C. J. et al. 2002. Intestinal starch disappearance increased in steers abomasally infused with starch and protein. J. Anim. Sci. 80:3361-3368
  37. Richards, C. J., K. C. Swanson, S. J. Paton, D. L. Harmon and G. B. Huntington. 2003. Pancreatic exocrine secretion in steers infused post-ruminally with casein and corn starch. J. Anim. Sci. 81:1051-1056 https://doi.org/10.1590/S1516-89132007000700007
  38. Rodriguez, S. M. et al. 2004. Influence of abomasal carbohydrates on small intestinal sodium-dependent glucose cotransporter activity and abundance in steers. J. Anim. Sci. 82:3015-3023
  39. Russell, J. R., A. W. Young and N. A. Jorgensen. 1981. Effect dietary corn starch intake on pancreatic amylase and intestinal maltase and ph in cattle. J. Anim. Sci. 52:1177-1182
  40. Scharrer, E., H. G. Liebich, W. Raab and N. Promberger. 1979a. Influence of age and rumen development on intestinal absorption of galactose and glucose in lambs. A functional and morphological study. Zentralbl.Veterinarmed. A. 26:95-105
  41. Scharrer, E., W. Peter and W. Raab. 1979b. Reciprocal relationship between rumen development and intestinal sugar transport capacity in sheep. Zentralbl.Veterinarmed.A. 26:513-520
  42. Shirazi-Beechey, S. P. et al. 1991. Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. J. Physiol. 437:699-708
  43. Shirazi-Beechey, S. P., R. B. Kemp, J. Dyer and R. B. Beechey. 1989. Changes in the functions of the intestinal brush border membrane during the development of the ruminant habit in lambs. Comp. Biochem. Physiol. 94B:801-806
  44. Siddons, R. C. 1968. Carbohydrase activities in the bovine digestive tract. Biochem. J. 108:839-844
  45. Swanson, K. C., J. A. Benson, J. C. Matthews and D. L. Harmon. 2004. Pancreatic exocrine secretion and plasma concentration of some gastrointestinal hormones in response to abomasal infusion of starch hydrolyzate and/or casein. J. Anim. Sci. 82:1781-1787
  46. Swanson, K. C. et al. 2008. Pancreatic mass, cellularity, and alpha amylase and trypsin activity in feedlot steers fed increasing amounts of a high-moisture-corn based diet. Can. J. Anim. Sci. 88:303-308 https://doi.org/10.4141/CJAS07142
  47. Swanson, K. C., J. C. Matthews, C. A. Woods and D. L. Harmon. 2002a. Post-ruminal administration of partially hydrolyzed starch and casein influences pancreatic à-amylase expression in calves. J. Nutr. 132:376-381
  48. Swanson, K. C., C. J. Richards and D. L. Harmon. 2002b. Influence of abomasal infusion of glucose or partially hydrolyzed starch on pancreatic exocrine secretion in beef steers. J. Anim. Sci. 80:1112-1116
  49. Taniguchi, K., G. B. Huntington and B. P. Glenn. 1995. Net nutrient flux by visceral tissues of beef steers given abomasal and ruminal infusions of casein and starch. J. Anim. Sci. 73:236-249
  50. Thorens, B. 1993. Facilitated glucose transporters in epithelial cells. Annu. Rev. Physiol. 55:591-608 https://doi.org/10.1146/annurev.ph.55.030193.003111
  51. Threadgill, D. S. and J. E. Womack. 1991. Mapping hsa 3 loci in cattle: Additional support for the ancestral synteny of hsa 3 and 21. Genomics 11:1143-1148 https://doi.org/10.1016/0888-7543(91)90042-D
  52. Walker, J. A. and D. L. Harmon. 1995. Influence of ruminal or abomasal starch hydrolysate infusion on pancreatic exocrine secretion and blood glucose and insulin concentrations in steers. J. Anim. Sci. 73:3766-3774
  53. Wright, E. M. 1993. The intestinal Na+/glucose cotransporter. Annu. Rev. Physiol. 55:575-589 https://doi.org/10.1146/annurev.ph.55.030193.003043
  54. Zhao, F. Q., E. K. Okine, C. I. Cheeseman, S. P. Shirazi-Beechey and J. J. Kennelly. 1998. Glucose transporter gene expression in lactating bovine gastrointestinal tract. J. Anim. Sci. 76: 2921-2929

Cited by

  1. Effect of replacing barley with corn or sorghum grain on rumen fermentation characteristics and performance of Iranian Baluchi lamb fed high concentrate rations vol.52, pp.4, 2012, https://doi.org/10.1071/AN11181
  2. Regulation of pancreatic exocrine secretion in goats: differential effects of short- and long-term duodenal phenylalanine treatment vol.97, pp.3, 2012, https://doi.org/10.1111/j.1439-0396.2012.01276.x
  3. Leucine markedly regulates pancreatic exocrine secretion in goats vol.98, pp.1, 2014, https://doi.org/10.1111/jpn.12069
  4. Effect of increasing the proportion of dietary concentrate on gastrointestinal tract measurements and brush border enzyme activity in Holstein steers vol.100, pp.6, 2017, https://doi.org/10.3168/jds.2016-12162
  5. Duodenal infusions of isoleucine influence pancreatic exocrine function in dairy heifers pp.1477-2817, 2018, https://doi.org/10.1080/1745039X.2017.1396144
  6. Effects of dietary leucine and phenylalanine on pancreas development, enzyme activity, and relative gene expression in milk-fed Holstein dairy calves vol.101, pp.5, 2018, https://doi.org/10.3168/jds.2017-13987
  7. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption vol.97, pp.8, 2014, https://doi.org/10.3168/jds.2014-8004
  8. Starch in ruminant diets: a review vol.29, pp.2, 2016, https://doi.org/10.17533/udea.rccp.v29n2a01
  9. Isoleucine Regulates the Synthesis of Pancreatic Enzymes via the Activation of mRNA Expression and Phosphorylation in the Mammalian Target of Rapamycin Signalling Pathways in Pancreatic Tissues vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6302950
  10. Leucine Regulates the Exocrine Function in Pancreatic Tissue of Dairy Goats In Vitro vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/7521715
  11. From Maternal Grazing to Barn Feeding During Pre-weaning Period: Altered Gastrointestinal Microbiota Contributes to Change the Development and Function of the Rumen and Intestine of Yak Calves vol.11, pp.None, 2009, https://doi.org/10.3389/fmicb.2020.00485
  12. Duodenal Infusions of Starch with Casein or Glutamic Acid Influence Pancreatic and Small Intestinal Carbohydrase Activities in Cattle vol.150, pp.4, 2009, https://doi.org/10.1093/jn/nxz319
  13. Decreased amylolytic microbes of the hindgut and increased blood glucose implied improved starch utilization in the small intestine by feeding rumen-protected leucine in dairy calves vol.103, pp.5, 2009, https://doi.org/10.3168/jds.2019-17194
  14. Leucine improves α-amylase secretion through the general secretory signaling pathway in pancreatic acinar cells of dairy calves vol.318, pp.6, 2009, https://doi.org/10.1152/ajpcell.00396.2019
  15. Associations of mucosal disaccharidase kinetics and expression in the jejunum of steers with divergent average daily gain vol.98, pp.9, 2009, https://doi.org/10.1093/jas/skaa285
  16. High rumen degradable starch decreased goat milk fat via trans -10, cis -12 conjugated linoleic acid-mediated downregulation of lipogenesis genes, particularly, INSIG1 vol.11, pp.1, 2009, https://doi.org/10.1186/s40104-020-00436-3
  17. Effects of dietary supplementation with rosemary oil on methanogenic bacteria density, blood and rumen parameters and meat quality of fattening lambs vol.20, pp.1, 2009, https://doi.org/10.1080/1828051x.2021.1906165
  18. Evaluation of parboiled rice by-product as a ruminant feed: in vitro digestibility and methane production vol.762, pp.1, 2021, https://doi.org/10.1088/1755-1315/762/1/012045
  19. Growth of Pancreas and Intestinal Enzyme Activities in Growing Goats: Influence of a Low-Protein Diet vol.11, pp.11, 2021, https://doi.org/10.3390/agriculture11111155
  20. Regulation of pancreatic exocrine in ruminants and the related mechanism: The signal transduction and more vol.7, pp.4, 2009, https://doi.org/10.1016/j.aninu.2021.09.004
  21. Effects of corn processing and cattle size on total tract digestion and energy and nitrogen balance vol.99, pp.12, 2009, https://doi.org/10.1093/jas/skab349
  22. Evaluating the relationship between in vitro and in situ starch degradation rates vol.283, pp.None, 2022, https://doi.org/10.1016/j.anifeedsci.2021.115175