DOI QR코드

DOI QR Code

The Effect of Tertiary-Butyl Alcohol on the Texturing of Crystalline Silicon Solar Cells

Park, Hayoung;Lee, Joon Sung;Lim, Hee Jin;Kim, Donghwan;Kwon, Soonwoo;Yoon, Sewang

  • Published : 20091100

Abstract

The effects of adding different alcohols to the KOH solution used for texturing crystalline silicon have been studied. Instead of using isopropyl alcohol (IPA), the most commonly used alcohol additive in surface texturing, we added tertiary-butyl alcohol (TBA). The use of this alcohol resulted in smaller pyramids forming on the silicon surface. Controlling the surface morphology of the silicon is one of the main concerns when using texturing technology to produce solar cells. It is known that alcohol additives influence the silicon etching rate, in other meaning the etching anisotropy. Due to its low dielectric constant and polarity, TBA reduced the tension of silicon surface. This improved the resulting surface morphology, which consisted of 2 $\sim$ 4 ${\mu}m$-sized pyramids. We obtained images of surface morphology data using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, surface reflectance was measured by a UV-Vis spectrophotometer.

Keywords

References

  1. J. H. Lee, D. K. Lim and J. S. Lee, Principle of solar cell (Hongreoung Science, Korea, 2005), p. 281
  2. S. H. Lee, J. Korean Phys. Soc. 39, 369 (2001) https://doi.org/10.3938/jkps.39.369
  3. K. E. Bean, IEEE Transactions on electron devices ED-25 (1978)
  4. G. T. Koacs, N. I. Maluf and K. E. Petersen, Proc. IEEE 86 (1998)
  5. S. W. Park, J. KIM and S. H. Lee, J. Korean Phys. Soc. 43, 423 (2003) https://doi.org/10.3938/jkps.43.423
  6. D. Iencinella, E. Centurioni, R. Rizzoli and F. Zignani, Sol. Energy Mater. Sol. Cells. 87, 725 (2005) https://doi.org/10.1016/j.solmat.2004.09.020
  7. I. Zubel and M. Kramkowska, Sensors and Actuators A 93, 138 (2001) https://doi.org/10.1016/S0924-4247(01)00648-3
  8. S. H. Shin, Master Thesis, Hanyang University, 1998
  9. J. McMurry, Organic chemistry, 6th edition (Thomson, Canada, 2005), p. 602
  10. I. Zubel and M. Kramkowska, Sensors and Actuators, A 101, 255 (2002) https://doi.org/10.1016/S0924-4247(02)00265-0
  11. W. Kern, Handbook of semiconductor wafer cleaning technology: science, technology and application (Noyes Publication, New Jersey, 1993)

Cited by

  1. 실리콘 태양전지 셀 효율에 관한 연구 vol.11, pp.7, 2009, https://doi.org/10.5762/kais.2010.11.7.2565
  2. Photovoltaics literature survey (no. 80) vol.18, pp.6, 2009, https://doi.org/10.1002/pip.1028
  3. POCl3를 사용한 pn접합 소자에 관한 연구 vol.19, pp.5, 2009, https://doi.org/10.5757/jkvs.2010.19.5.391
  4. 태양전지의 실리콘 표면과 Fill Factor, 개방전압, 단락전류에 관한 연구 vol.12, pp.6, 2009, https://doi.org/10.5762/kais.2011.12.6.2735
  5. Investigation of Si(h k l) surfaces etched in KOH solutions saturated with tertiary-butyl alcohol vol.21, pp.11, 2011, https://doi.org/10.1088/0960-1317/21/11/115026
  6. Ultra‐low concentration Na2CO3/NaHCO3 solution for texturization of crystalline silicon solar cells vol.20, pp.2, 2012, https://doi.org/10.1002/pip.1117
  7. 결정질 실리콘 태양전지의 Ag 촉매층을 이용한 나노 텍스쳐링 공정에 관한 연구 vol.25, pp.1, 2009, https://doi.org/10.4313/jkem.2012.25.1.58