The anticancer effect and mechanism of photodynamic therapy using a new photosensitizer and diode laser on cervical cancer cell

자궁경부암 세포주에서 새로운 광감작제와 다이오드 레이저를 이용한 광역학치료의 항암효과와 치료기전에 대한 연구

Kim, Jong-Soo;Park, Choong-Hak;Chung, Phil-Sang
김종수;박충학;정필상

  • Published : 20090000

Abstract

Objective: During the last several years, such as Photofrin(R), Photogem(R), HpD, and 5-aminolevulenic acid (ALA) has been used as photosensitizers for a wide range of malignant tumors as well as non-malignant disease. A new photosensitizer, 9-Hydroxypheophorbide-a (9-HpbD-a) was derived from Spirulina platensis. The aim of this study was to evaluate the anticancer effect and mechanism of photodynamic therapy in vitro using 9-HpbD-a and 670 nm diode laser on a HT-3 cervical cancer cell line. Methods: We studied the cytotoxic effect of 9-HpbD-a and 670 nm diode laser in HT-3 cervical cancer cell line. The cultured HT-3 cells were treated with serial concentrations of 9-HpbD-a followed by various irradiation time (0, 5, 15, 30 min) and by various interval times (0, 3, 6, 9, 12 24 hours) until laser irradiation, then 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT) assay was applied to measure the relative inhibitory effect of PDT. Results: Optimal condition for laser irradiation time was 15 minutes and the cytotoxic effect according to the incubation time after 9-HpbD-a treatment was increased until 6 hours. Under confocal microscopy, to observe intracellular localization of 9-HpbD-a, cells dual-stained with 9-HpbD-a and panel of organelle-specific fluorescence probes (MitoTracker, LysoTracker, ER-Tracker), endoplasmic reticulum (ER) as a major accumulation organelle site in HT-3 cervical cell line for this new photosensitizer. Conclusion: The anticancer effect of PDT using 9-HpbD-a is effective in HT-3 cervical cancer cell line. This agent therefore represents a promising photosensitizing prodrug for the treatment of cervical cancer with PDT in clinical setting for the future.

목적: 광역학치료에서 기존에 사용 중인 광감작제의 단점을 보완하여 새로운 재료에서 높은 파장의 흡수를 보이고 빠른 대사를 보이는 보다 효과적인 암세포를 죽일 수 있는 광감작제의 개발이 이루어지고 있는데, 최근 국내에서 개발된 광감작제로 녹조류인 Spirulina platensis에서 추출하여 만든 광감작제 9-hydroxypheophorbide-a (9-HpbD-a)를 이용하여 자궁경부암 세포주인 HT-3에서 새로 개발된 9-HpbD-a 광감작제의 임상적용을 위하여 국내에서 개발된 670 nm의 다이오드 레이저를 이용한 광역학치료의 항암효과 및 치료기전을 확인하고자 본 연구를 시행하였다. 연구 방법: 광감작제는 금호 생명과학연구소에서 녹조류의 클로로필을 산화반응과 산 처리를 통해 10-hydroxypheophytin-a 유도체로 만든 다음 이를 유기용매를 이용하여 추출한 10-hydroxypheophytin과 10-hydroxypheophytin-a 유도체를 유기합성 후 안정된 구조 및 대량 수율이 가능한 9-hydroxypheophorbide-a (9-HpbD-a)를 사용하였다. 세포주는 인체의 자궁경부 편평세포암주 (squamous cervical cancer cell)인 HT-3을 사용하였다 (ATCC(R)Number: HTB-$32^{TM}$). 광감작제와 레이저조사가 세포에 미치는 독성능을 알아보기 위해 MTT 검색법을 이용하였으며, 9-HpbD-a의 세포 내 축적위치를 확인하기 위하여 세포 내 소기관에 특이적으로 염색되는 형광시약과 9-HpbD-a를 이 중 염색하여 confocal microscope를 이용하여 확인하였다. 결과: HT-3 자궁경부암 세포주에서 클로로필 유도체인 9-HpbD-a의 세포독성능을 검사한 결과 생체 외 (in vitro) 실험에서 9-HpbD-a의 농도와 레이저의 조사량 그리고 9-HpbD-a의 투여 후 레이저조사까지의 시간 간격이 증가할수록 세포생존율이 통계적으로 의미 있게 감소하였다. 9-HpbD-a의 적정 레이저조사 시간은 15분 (1.98 J/cm^{2}), 광감작제를 투여하고 레이저조사 시간까지의 배양시간은 최소 6시간 이상임을 확인하였다. 광학현미경상으로 광감작제만을 투여한 군과 레이저조사만을 한 군에서는 HT-3 세포의 형태학적 변화는 나타나지 않았으며, 광역학치료 군에서는 세포가 괴사되는 형태학적인 변화를 보였다. Confocal microscopy를 이용하여 세포 내 9-HpbD-a의 축적 소기관을 확인 하였는데, 9-HpbD-a가 세포 내 소포체에 가장 많이 축적되고 미토콘드리아와 라이소좀에서는 약간의 축적됨을 확인하였다. 결론: 본 연구에서 이용한 9-HpbD-a가 기존에 사용하고 있는 1세대 광감작제를 대신하여 효과적인 광감작제로 사용되기 위해서는 종양조직에만 많은 양의 광감작제가 선택적으로 축적되게 하여 광역학치료의 효과를 높여야 하며, 9-HpbD-a의 독성능 시험을 비롯하여 현재 사용 중인 항암제와의 병합요법에 대한 연구 및 9-HpbD-a를 이용한 광역학진단 (photodynamic diagnosis) 연구를 토대로 새로운 광감작제와 함께 인체조직의 침투력이 좋은 우수한 레이저의 개발도 함께 이루어져야 한다.

Keywords

References

  1. Allison RR, Cuenca R, Downie GH, Randall ME, Bagnato VS, Sibata CH. PD/PDT for gynecological disease: A clinical review. Photodiagn Photodyn Ther 2005; 2: 51-63 https://doi.org/10.1016/S1572-1000(05)00033-5
  2. Wierrani F, Kubin A, Jindra R, Henry M, Gharehbaghi K, Grin W, et al. 5-aminolevulinic acid-mediated photodynamic therapy of intraepitherial neoplasia and human papilloma virus of the uterine cervix- a new experimental approach. Cancer Detect Prev 1999; 23: 351-5 https://doi.org/10.1046/j.1525-1500.1999.99036.x
  3. Hillemanns P, Korell M, Schmitt-Sody M, Baumgartner R, Beyer W, Kimming R, et al. Photodynamic therapy in women with cervical intraneplasia using topically applied 5-aminolevulinic acid. Int J Cancer 1999; 81; 34-8 https://doi.org/10.1002/(SICI)1097-0215(19990331)81:1<34::AID-IJC7>3.0.CO;2-H
  4. Pass H. Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst 1993; 85: 443-56 https://doi.org/10.1093/jnci/85.6.443
  5. Regillo CD. Update on photodynamic therapy. Curr Opin Opthalmol 2000; 11: 166-70 https://doi.org/10.1097/00055735-200006000-00002
  6. Ackroyd R, Kelty C, Brown N, Reed M. The history of Photodetection and Photodynamics Therapy. Photochem Photobiol 2001; 74: 656-69 https://doi.org/10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2
  7. Dougherty T, Kaufman J, Goldfarb A, Weishaupt K, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res 1978; 38: 2628-35
  8. Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol 1991; 53: 859-70 https://doi.org/10.1111/j.1751-1097.1991.tb09900.x
  9. Lee WY, Park JH, Kim BS, Han MJ, Hahn BS. Chlorophyll derivatives (CpD) extracted from silk worm excreta are specifically cytotoxic to tumor cells in vitro. Yonsei Med J 1990; 31: 225-33 https://doi.org/10.3349/ymj.1990.31.3.225
  10. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, et al. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988; 48: 4827-33
  11. Kato H. History of photodynamic therapy-past, present and future. Gan To Kagaku Ryoho 1996; 23: 8-15
  12. Moan J, and Berg K. The photodegradation of porphrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991; 53: 549-53 https://doi.org/10.1111/j.1751-1097.1991.tb03669.x
  13. Foote, CS. Type I and type II mechanisms of photodynamic action. In: Heitz JR, Downum KR, editors. ASC Symposium Series 339, Light Activated Pesticides. Washington, DC.: American Chemical Society; 1987. p.22-38
  14. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol 1991; 54: 659 https://doi.org/10.1111/j.1751-1097.1991.tb02071.x
  15. M$\ddot{u}$ller S, Walt H, Dobler-Girdziunaite D, Fiedler D, Haller U. Enhanced photodynamic effects using fractionated laser light. Photochem Photobiol B 1998; 42: 67-70 https://doi.org/10.1016/S1011-1344(97)00124-3
  16. Sharman WM, Allen CM, van Lier JE. Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 1999; 4: 507-17 https://doi.org/10.1016/S1359-6446(99)01412-9
  17. Muroya T, Suehiro Y, Umayahara K, Akiya T, Iwabuchi H, Sakunaga H, et al. Photodynamic therapy (PDT) for early cervical cancer. Gan To Kagaku Ryoho 1996; 23: 47-56
  18. 한세준, 송창훈, 안태규, 이병래, 안웅식. 젊은 여성에서 자궁 경부의 고도 상피 이형증에 대한 Hematoporphyrin (HpD)을 이용한 광역학 치료의 효과. 대한광역학회지 2004; 1: 101-7
  19. 이찬, 김조영, 정철회, 나영정, 김인호, 이선영등. 자궁 경부 상피내종양의 치료를 위한 광역동화학시술. 대부종콜포회지 2004; 15: 85-91
  20. Furukawa K, Yamamoto H, Crean DH, Kato H, Man TS. Localization and treatment of transformed tissues using the photodynamic sensitizer 2-[1 hexyloxyethyl]-2-devinyl pyropheophor bide-a. Lasers Surg Med 1996; 18: 157-66 https://doi.org/10.1002/(SICI)1096-9101(1996)18:2<157::AID-LSM5>3.0.CO;2-R
  21. 김한균, 정필상, 김세형, 이상훈, 이정구. 이종이식된 두경부영역의 편평세포암종에서 9-Hydroxypheophorbide-alpha와 630 nm 다이오드 레이저를 이용한 광역학치료의 항암효과 및 치료기전에 대한 연구. 대한이비인후과학회지 2005; 48: 765-70
  22. Fujishima I, Sakai T, Tanaka T, Ryu H, Uemura K, Fujishima Y, et al. Photodynamic therapy using pheophorbide a and Nd:YAG laser. Neurol Med Chir (Tokyo) 1991; 31: 257-63 https://doi.org/10.2176/nmc.31.257
  23. Allison BA, Pritchard PH, Levy JG. Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin deprivative. Br J Cancer 1994; 69: 833-9 https://doi.org/10.1038/bjc.1994.162
  24. Henderson BW, Farrell G. Possible implications of vascular damage for tumor cell inactivation in vivo: comparison of different photosensitizers. In: Dougherty TJ, editors. SPIE Proceedings 1065 Photodynamic Therapy: Mechanisms. The International Society for Optical Engineering: Bellingham, Washington, USA; 1989. p.2-10
  25. Berg K, Moan J. Lysosomes and microtubles as targets for photochemotherapy of cancer. Photochem Photobiol 1997; 65: 403-9 https://doi.org/10.1111/j.1751-1097.1997.tb08578.x
  26. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004; 1; 279-93 https://doi.org/10.1016/S1572-1000(05)00007-4
  27. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2005; 2: 1-23 https://doi.org/10.1016/S1572-1000(05)00030-X
  28. Peng Q, Moan J, Nesland JM. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol 1996; 20: 109-29 https://doi.org/10.3109/01913129609016306
  29. Zhou CN. Mechanism of tumor necrosis induced by photodynamic therapy. J Photochem Photobiol B 1989; 3: 299-318 https://doi.org/10.1016/1011-1344(89)80035-1
  30. Wyld L, Reed MW, Brown NJ. Differential cell death response to photodynamic therapy is dependent on dose and cell type. Br J Cancer 2001; 84: 1384-6 https://doi.org/10.1054/bjoc.2001.1795
  31. Moor AC. Signaling pathway in celll death and survival after photodynamic therapy. J Photochem Photobiol 2000; 57: 1-13 https://doi.org/10.1016/S1011-1344(00)00065-8
  32. Lauber K, Appel HA, Schlosser SF, Gregor M, Schulze-Osthoff K, Wesselborg S. The adapter protein apoptotic protease activating factor-1 (Apaf-1) is proteolytically processed during apoptosis. J Biol Chem 2001; 276: 29772-81 https://doi.org/10.1074/jbc.M101524200
  33. Zou H, Li Y, Liu X, Wang X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999; 274: 11549-56 https://doi.org/10.1074/jbc.274.17.11549
  34. Nowis D, Stoklosa T, Legat M, Issat T, Jakobisiak M, Golab J. The influence of photodynamic therapy on the immune response. Photodiagn Photodyn Ther 2005; 2: 283-98 https://doi.org/10.1016/S1572-1000(05)00098-0
  35. Woodburn KW, Vardaxis NJ, Hill JS, Kaye AH, Phillips DR. Subcellular localization of porphyrins using confocal laser scanning microscopy. Photochem Photobiol 1991; 54: 725-32 https://doi.org/10.1111/j.1751-1097.1991.tb02081.x
  36. Miller GG, Brown K, Moore RB, Diwu ZJ, Liu J, Huang L, et al. Uptake kinetics and intracellular localization of hypocrellin photosensitizers for photodynamic therapy: a confocal microscopy study. J Photochem Photobiol 1995; 61: 632-8 https://doi.org/10.1111/j.1751-1097.1995.tb09880.x
  37. Kessel D, Luo YJ. Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol 1998; 42: 89-95 https://doi.org/10.1016/S1011-1344(97)00127-9
  38. Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 1997; 39: 1-18 https://doi.org/10.1016/S1011-1344(96)07428-3