DOI QR코드

DOI QR Code

Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose $PPAR{\alpha}$ in high fat diet-induced obese mice

Jeong, Sun-Hyo;Yoon, Mi-Chung

  • Published : 20090600

Abstract

Peroxisome proliferator-activated receptor $\alpha$ ($PPAR{\alpha}$) activation in rodents is thought to improve insulin sensitivity by decreasing ectopic lipids in non-adipose tissues. Fenofibrate, a lipid-modifying agent that acts as a $PPAR{\alpha}$ agonist, may prevent adipocyte hypertrophy and insulin resistance by increasing intracellular lipolysis from adipose tissue. Consistent with this hypothesis, fenofibrate decreased visceral fat mass and adipocyte size in high fat diet-fed obese mice, and concomitantly increased the expression of $PPAR{\alpha}$ target genes involved in fatty acid $\beta$-oxidation in both epididymal adipose tissue and differentiated 3T3-L1 adipocytes. However, mRNA levels of adipose marker genes, such as leptin and $TNF{\alpha}$, were decreased in epididymal adipose tissue by fenofibrate treatment. Fenofibrate not only reduced circulating levels of free fatty acids and triglycerides, but also normalized hyperinsulinemia and hyperglycemia in obese mice. Blood glucose levels of fenofibrate-treated mice were significantly reduced during intraperitoneal glucose tolerance test compared with obese controls. These results suggest that fenofibrate-induced fatty acid $\beta$-oxidation in visceral adipose tissue may be one of the major factors leading to decreased adipocyte size and improved insulin sensitivity.

Keywords

References

  1. Ahima RS. Adipose tissue as an endocrine organ. Obesity 2006;14 Suppl 5:242S-9S https://doi.org/10.1038/oby.2006.317
  2. Akiyama TE, Nicol CJ, Fievet C, Staels B, Ward JM, Auwerx J, Lee SS, Gonzalez FJ, Peters JM. Peroxisome proliferatoractivated receptor-alpha regulates lipid homeostasis, but is not associated with obesity: studies with congenic mouse lines. J Biol Chem 2001;276:39088-93 https://doi.org/10.1074/jbc.M107073200
  3. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest 1994;93:2438-46 https://doi.org/10.1172/JCI117252
  4. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997;46:3-10 https://doi.org/10.2337/diabetes.46.1.3
  5. Boden G. Free fatty acids and insulin secretion in humans. Curr Diab Rep 2005;5:167-70 https://doi.org/10.1007/s11892-005-0004-5
  6. Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 2005;54:1392-9 https://doi.org/10.2337/diabetes.54.5.1392
  7. Bossee Y, Desprees JP, Bouchard C, P$\acute{e}$russe L, Vohl MC. The peroxisome proliferator-activated receptor alpha L162V mutation is associated with reduced adiposity. Obes Res 2003;11:809-16 https://doi.org/10.1038/oby.2003.112
  8. Brun RP, Kim JB, Hu E, Spiegelman BM. Peroxisome proliferator-activated receptor gamma and the control of adipogenesis. Curr Opin Lipidol 1997;8:212-8 https://doi.org/10.1097/00041433-199708000-00004
  9. Brunzell JD, Hokanson JE. Dyslipidemia of central obesity and insulin resistance. Diabetes Care 1999;22:C10-C3 https://doi.org/10.2337/diacare.22.1.10
  10. Bulcao C, Ferreira SR, Giuffrida FM, Ribeiro-Filho FF. The new adipose tissue and adipocytokines. Curr Diab Rep 2006;2:19-28 https://doi.org/10.2174/157339906775473617
  11. Cabrero A, Alegret M, Sánchez RM, Adzet T, Laguna JC, Vázquez M. Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 2001;50:1883-90 https://doi.org/10.2337/diabetes.50.8.1883
  12. Ceddia RB, William WN Jr, Lima FB, Curi R. Leptin inhibits insulin-stimulated incorporation of glucose into lipids and stimulates glucose decarboxylation in isolated rat adipocytes. J Endocrinol 1998;158:R7-R9 https://doi.org/10.1677/joe.0.158R007
  13. de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, Burkey BF. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes 2001;50:1863-71 https://doi.org/10.2337/diabetes.50.8.1863
  14. Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell 2004;116:337-50 https://doi.org/10.1016/S0092-8674(03)01081-X
  15. Holness MJ, Smith ND, Greenwood GK, Sugden MC. Acute (24 h) activation of peroxisome proliferator-activated receptor-alpha (PPARalpha) reverses high-fat feedinginduced insulin hypersecretion in vivo and in perifused pancreatic islets. J Endocrinol 2003;177:197-205 https://doi.org/10.1677/joe.0.1770197
  16. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87-91 https://doi.org/10.1126/science.7678183
  17. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996;271:665-8 https://doi.org/10.1126/science.271.5249.665
  18. Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, Ohashi K, Takahashi A, Sone H, Gotoda T, Osuga J, Ishibashi S, Yamada N. Cross-talk between peroxisome proliferatoractivated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol 2003;17:1255-67 https://doi.org/10.1210/me.2002-0191
  19. Jensen MD. Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human model. Obesity (Silver Spring) 2006;14:20S-4S https://doi.org/10.1038/oby.2006.278
  20. Jeong S, Han M, Lee H, Kim M, Nicol CJ, Kim BH, Choi JH, Oh GT, Yoon M. Effects of fenofibrate on high fat diet-induced body weight gain and adiposity in female? C57BL/6J mice. Metabolism 2004a;53:1284-9 https://doi.org/10.1016/j.metabol.2004.05.003
  21. Jeong S, Kim M, Han M, Lee H, Ahn J, Kim M, Song YH, Shin C, Nam KH, Kim TW, Oh GT, Yoon M. Fenofibrate prevents obesity and hypertriglyceridemia in LDL receptor-null mice. Metabolism 2004b;53:607-13 https://doi.org/10.1016/j.metabol.2003.12.010
  22. Jeong S, Yoon M. Troglitazone lowers serum triglycerides with sexual dimorphism in C57BL/6J mice. J Exp Biomed Sci 2006;12:65-72
  23. Jeong S, Yoon M. Inhibition of the actions of peroxisome proliferator-activated receptor α on obesity by estrogen. Obesity 2007;15:1430-40 https://doi.org/10.1038/oby.2007.171
  24. Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000;106:459-65 https://doi.org/10.1172/JCI10830
  25. Kissebah AH. Central obesity: measurement and metabolic effects. Diabetes Rev 1997;5:8-20
  26. Kliewer SA, Lehmann JM, Wilson TM. Orphan nuclear receptors: shifting endocrinology into reverse. Science 1999;284:757-60 https://doi.org/10.1126/science.284.5415.757
  27. Koh EH, Kim MS, Park JY, Kim HS, Youn JY, Park HS, Youn JH, Lee KU. Peroxisome proliferator-activated receptor (PPAR)-alpha activation prevents diabetes in OLETF rats:comparison with PPAR-gamma activation. Diabetes 2003;52:2331-7 https://doi.org/10.2337/diabetes.52.9.2331
  28. Kralisch S, Sommer G, Deckert CM, Linke A, Bluher M, Stumvoll M, Fasshauer M. Adipokines in diabetes and cardiovascular diseases. Minerva Endocrinol 2007;32:161-71
  29. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T, et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999;4:597-609 https://doi.org/10.1016/S1097-2765(00)80210-5
  30. Lalloyer F, Vandewalle B, Percevault F, Torpier G, Kerr-Conte J, Oosterveer M, Paumelle R, Fruchart JC, Kuipers F, Pattou F, Fiévet C, Staels B. Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 2006;55:1605-13 https://doi.org/10.2337/db06-0016
  31. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006;116:571-80 https://doi.org/10.1172/JCI27989
  32. Maffei M, Fei H, Lee GH, Dani C, Leroy P, Zhang Y, Proenca R, Negrel R, Ailhaud G, Friedman JM. Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc Natl Acad Sci USA 1995;92:6957-60 https://doi.org/10.1073/pnas.92.15.6957
  33. Matsuzawa Y. The metabolic syndrome and adipocytokines. FEBS Lett 2006;580:2917-21 https://doi.org/10.1016/j.febslet.2006.04.028
  34. Murphy JE, Zhou S, Giese K, Williams LT, Escobedo JA, Dwarki VJ. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin. Proc Natl Acad Sci USA 1997;94:13921-6 https://doi.org/10.1073/pnas.94.25.13921
  35. Okamoto Y, Higashiyama H, Inoue H, Kanematsu M, Kinoshita M, Asano S. Quantitative image analysis in adipose tissue using an automated image analysis system: differential effects of peroxisome proliferator-activated receptor-alpha and -gamma agonist on white and brown adipose tissue morphology in AKR obese and db/db diabetic mice. Pathol Int 2007;57:369-77 https://doi.org/10.1111/j.1440-1827.2007.02109.x
  36. Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kadowaki T. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998;101:1354-61 https://doi.org/10.1172/JCI1235
  37. Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996;97:2859-65 https://doi.org/10.1172/JCI118742
  38. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996;37:907-25
  39. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell 1996;87:377-89 https://doi.org/10.1016/S0092-8674(00)81359-8
  40. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998;98:2088-93 https://doi.org/10.1161/01.CIR.98.19.2088
  41. Taylor SI, Barr V, M. Reitman M. Does leptin contribute to diabetes caused by obesity? Science 1996;274:1151-2 https://doi.org/10.1126/science.274.5290.1151
  42. Vazquez M, Roglans N, Cabrero A, Rodr$acute{i}$guez C, Adzet T, Alegret M, Sanchez RM, Laguna JC. Bezafibrate induces acyl-CoA oxidase mRNA levels and fatty acid peroxisomal beta-oxidation in rat white adipose tissue. Mol Cell Biochem 2001;216:71-8 https://doi.org/10.1023/A:1011060615234
  43. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005;115:1111-9
  44. Wickelgren I. Obesity: how big a problem? Science 1998;280:1364-7 https://doi.org/10.1126/science.280.5368.1364
  45. Yoon M, Jeong S, Nicol CJ, Lee H, Han M, Kim JJ, Seo YJ, Ryu C, Oh GT. Fenofibrate regulates obesity and lipid metabolism with sexual dimorphism. Exp Mol Med 2002;34:481-8 https://doi.org/10.1038/emm.2002.67
  46. Yoon M, Jeong S, Lee H, Han M, Kang JH, Kim EY, Kim M, Oh GT. Fenofibrate improves lipid metabolism and obesity in ovariectomized LDL receptor-null mice. Biochem Biophys Res Commun 2003;302:29-34 https://doi.org/10.1016/S0006-291X(03)00088-3

Cited by

  1. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats vol.9, pp.None, 2009, https://doi.org/10.1186/1476-511x-9-81
  2. Fenofibrate attenuates tubulointerstitial fibrosis and inflammation through suppression of nuclear factor-κB and transforming growth factor-β1/Smad3 in diabetic nephropathy vol.235, pp.3, 2009, https://doi.org/10.1258/ebm.2009.009218
  3. Therapeutic Options for the Prevention of Type 2 Diabetes Mellitus in the Metabolic Syndrome vol.77, pp.5, 2009, https://doi.org/10.1002/msj.20204
  4. Gene expression profiles of adipose tissue of high-fat diet-induced obese rats by cDNA microarrays vol.37, pp.8, 2010, https://doi.org/10.1007/s11033-010-0021-6
  5. Mechanisms of the Anti-Obesity Effects of Oxytocin in Diet-Induced Obese Rats vol.6, pp.9, 2011, https://doi.org/10.1371/journal.pone.0025565
  6. MicroRNAs – Important Molecules in Lung Cancer Research vol.2, pp.None, 2009, https://doi.org/10.3389/fgene.2011.00104
  7. Fenofibrate administration to arthritic rats increases adiponectin and leptin and prevents oxidative muscle wasting vol.1, pp.1, 2009, https://doi.org/10.1530/ec-12-0003
  8. Concurrent Activation of Liver X Receptor and Peroxisome Proliferator-Activated Receptor Alpha Exacerbates Hepatic Steatosis in High Fat Diet-Induced Obese Mice vol.8, pp.6, 2009, https://doi.org/10.1371/journal.pone.0065641
  9. The PPARα agonist fenofibrate suppresses B-cell lymphoma in mice by modulating lipid metabolism ☆☆ vol.1831, pp.10, 2009, https://doi.org/10.1016/j.bbalip.2013.04.012
  10. $17{\beta}$-estradiol inhibits $PPAR{\alpha}$ of skeletal muscle vol.17, pp.5, 2009, https://doi.org/10.1080/19768354.2013.831772
  11. Fenofibrate increases serum vaspin by upregulating its expression in adipose tissue vol.45, pp.3, 2009, https://doi.org/10.1007/s12020-013-0023-y
  12. Network signatures link hepatic effects of anti-diabetic interventions with systemic disease parameters vol.8, pp.None, 2014, https://doi.org/10.1186/s12918-014-0108-0
  13. Hydroxyeicosapentaenoic acids from the Pacific krill show high ligand activities for PPARs vol.55, pp.5, 2009, https://doi.org/10.1194/jlr.m047514
  14. The Role of Angiogenesis in Obesity vol.24, pp.5, 2014, https://doi.org/10.5352/jls.2014.24.5.573
  15. Effect of Global ATGL Knockout on Murine Fasting Glucose Kinetics vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/542029
  16. Effects of combined dietary supplementation with fenofibrate and Schisandrae Fructus pulp on lipid and glucose levels and liver function in normal and hypercholesterolemic mice vol.9, pp.None, 2009, https://doi.org/10.2147/dddt.s73544
  17. The herbal composition GGEx18 from Laminaria japonica, Rheum palmatum, and Ephedra sinica inhibits visceral obesity and insulin resistance by upregulating visceral adipose genes involved in fatty acid vol.53, pp.2, 2009, https://doi.org/10.3109/13880209.2014.917328
  18. PPAR‐α agonist elicits metabolically active brown adipocytes and weight loss in diet‐induced obese mice vol.33, pp.4, 2009, https://doi.org/10.1002/cbf.3111
  19. A Novel Peroxisome Proliferator-activated Receptor (PPAR)α Agonist and PPARγ Antagonist, Z-551, Ameliorates High-fat Diet-induced Obesity and Metabolic Disorders in Mice vol.290, pp.23, 2009, https://doi.org/10.1074/jbc.m114.622191
  20. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis vol.10, pp.11, 2009, https://doi.org/10.1371/journal.pone.0141612
  21. PPAR α Agonist Fenofibrate Reduced the Secreting Load of β -Cells in Hypertriglyceridemia Patients with Normal Glucose Tolerance vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/6232036
  22. Dietary Fatty Acid Composition Modulates Obesity and Interacts with Obesity-Related Genes vol.52, pp.10, 2017, https://doi.org/10.1007/s11745-017-4291-9
  23. Fenofibrate, but not ezetimibe, prevents fatty liver disease in mice lacking phosphatidylethanolamine N -methyltransferase vol.58, pp.4, 2009, https://doi.org/10.1194/jlr.m070631
  24. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD vol.13, pp.1, 2017, https://doi.org/10.1038/nrendo.2016.135
  25. Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice vol.55, pp.1, 2009, https://doi.org/10.1080/13880209.2016.1278454
  26. The Angiogenesis Inhibitor ALS-L1023 from Lemon-Balm Leaves Attenuates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Regulating the Visceral Adipose-Tissue Function vol.18, pp.4, 2009, https://doi.org/10.3390/ijms18040846
  27. The Herbal Composition Gangjihwan from Ephedra intermedia, Lithospermum erythrorhizon and Rheum palmatum Ameliorates Hepatic Inflammation and Fibrosis in Obese C57BL/6J Mice and HepG2 Cells vol.23, pp.2, 2009, https://doi.org/10.15616/bsl.2017.23.2.144
  28. Korean Red Ginseng (Panax ginseng) Potentiates the Inhibitory Actions of Testosterone on Obesity and Adipogenesis in High Fat Diet-Fed Castrated Mice vol.23, pp.3, 2009, https://doi.org/10.15616/bsl.2017.23.3.261
  29. Protectin DX ameliorates palmitate- or high-fat diet-induced insulin resistance and inflammation through an AMPK-PPARα-dependent pathway in mice vol.7, pp.None, 2009, https://doi.org/10.1038/s41598-017-01603-9
  30. Fenofibrate decreases the bone quality by down regulating Runx2 in high-fat-diet induced Type 2 diabetes mellitus mouse model vol.16, pp.None, 2017, https://doi.org/10.1186/s12944-017-0592-5
  31. The anti-obesity effect of starch in a whole grain-like structural form vol.9, pp.7, 2018, https://doi.org/10.1039/c8fo00602d
  32. Drugs Involved in Dyslipidemia and Obesity Treatment: Focus on Adipose Tissue vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/2637418
  33. Supplementation of Stingless Bee Honey from Heterotrigona itama Improves Antiobesity Parameters in High-Fat Diet Induced Obese Rat Model vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/6371582
  34. Ileal Transposition Surgery Decreases Fat Mass and Improves Glucose Metabolism in Diabetic GK Rats: Possible Involvement of FGF21 vol.9, pp.None, 2018, https://doi.org/10.3389/fphys.2018.00191
  35. Differential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: A study in the subcutaneous white adipose tissue of obese male mice vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0191365
  36. Fenofibrate reverses changes induced by high‐fat diet on metabolism in mice muscle and visceral adipocytes vol.233, pp.4, 2018, https://doi.org/10.1002/jcp.26203
  37. Vitamin C Inhibits Visceral Adipocyte Hypertrophy and Lowers Blood Glucose Levels in High-Fat-Diet-Induced Obese C57BL/6J Mice vol.24, pp.4, 2009, https://doi.org/10.15616/bsl.2018.24.4.311
  38. Dietary sn-2 palmitic triacylglycerols reduced faecal lipids, calcium contents and altered lipid metabolism in Sprague-Dawley rats vol.70, pp.4, 2019, https://doi.org/10.1080/09637486.2018.1541968
  39. Endocrine-Mediated Mechanisms of Metabolic Disruption and New Approaches to Examine the Public Health Threat vol.10, pp.None, 2009, https://doi.org/10.3389/fendo.2019.00039
  40. Saroglitazar Deactivates the Hepatic LPS/TLR4 Signaling Pathway and Ameliorates Adipocyte Dysfunction in Rats with High-Fat Emulsion/LPS Model-Induced Non-alcoholic Steatohepatitis vol.42, pp.3, 2009, https://doi.org/10.1007/s10753-019-00967-6
  41. Ascorbic acid inhibits visceral obesity and nonalcoholic fatty liver disease by activating peroxisome proliferator-activated receptor α in high-fat-diet-fed C57BL/6J mice vol.43, pp.8, 2009, https://doi.org/10.1038/s41366-018-0212-0
  42. Tipping the scales: Are females more at risk for obesity‐ and high‐fat diet‐induced hypertension and vascular dysfunction? vol.176, pp.21, 2009, https://doi.org/10.1111/bph.14783
  43. PPARα-targeted mitochondrial bioenergetics mediate repair of intestinal barriers at the host–microbe intersection during SIV infection vol.116, pp.49, 2009, https://doi.org/10.1073/pnas.1908977116
  44. Impaired Peroxisomal Fitness in Obese Mice, a Vicious Cycle Exacerbating Adipocyte Dysfunction via Oxidative Stress vol.31, pp.18, 2019, https://doi.org/10.1089/ars.2018.7614
  45. β -Sitosterol Shows Potential to Protect Against the Development of High-Fructose Diet-Induced Metabolic Dysfunction in Female Rats vol.23, pp.4, 2020, https://doi.org/10.1089/jmf.2019.0120
  46. PPAR-α activation counters brown adipose tissue whitening: a comparative study between high-fat– and high-fructose–fed mice vol.78, pp.None, 2009, https://doi.org/10.1016/j.nut.2020.110791
  47. The Promising Ability of Humulus lupulus L. Iso-α-acids vs. Diabetes, Inflammation, and Metabolic Syndrome: A Systematic Review vol.26, pp.4, 2009, https://doi.org/10.3390/molecules26040954
  48. Protective effect of fenofibrate against high‐fat–high‐fructose diet induced non‐obese NAFLD in rats vol.35, pp.2, 2009, https://doi.org/10.1111/fcp.12597
  49. Fenofibrate Regulates Visceral Obesity and Nonalcoholic Steatohepatitis in Obese Female Ovariectomized C57BL/6J Mice vol.22, pp.7, 2009, https://doi.org/10.3390/ijms22073675
  50. Effect of Korean Red Ginseng on metabolic syndrome vol.45, pp.3, 2009, https://doi.org/10.1016/j.jgr.2020.11.002
  51. Anti-Obesity Effects of Morus alba L. and Aronia melanocarpa in a High-Fat Diet-Induced Obese C57BL/6J Mouse Model vol.10, pp.8, 2009, https://doi.org/10.3390/foods10081914
  52. NMR-Based Metabolomics Approach to Investigate the Effects of Fruits of Acanthopanax sessiliflorus in a High-Fat Diet Induced Mouse Model vol.11, pp.8, 2009, https://doi.org/10.3390/metabo11080505
  53. Influence of Dietary Chitosan Feeding Duration on Glucose and Lipid Metabolism in a Diabetic Rat Model vol.26, pp.16, 2009, https://doi.org/10.3390/molecules26165033
  54. Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue vol.11, pp.1, 2009, https://doi.org/10.3390/cells11010004