Surface Characteristics of PLA(Polylactic acid) Film Treated by Atmospheric Pressure Plasma

대기압 플라즈마 처리에 따른 PLA(polylactic acid) 필름의 표면특성 변화

  • Jung, Jin Suk (Department of Chemical Engineering, Chungnam National University) ;
  • Liu, Xuyan (Department of Chemical Engineering, Chungnam National University) ;
  • Choi, Ho Suk (Department of Chemical Engineering, Chungnam National University)
  • 정진석 (충남대학교 공과대학 화학공학과) ;
  • 류욱연 (충남대학교 공과대학 화학공학과) ;
  • 최호석 (충남대학교 공과대학 화학공학과)
  • Received : 2008.12.02
  • Accepted : 2009.01.19
  • Published : 2009.02.28

Abstract

This study investigated the surface characteristics of polylactic acid (PLA) film after one atmospheric pressure plasma treatment. We used de-ionized water and diiodomethane as polar and non-polar solvents, respectively, for measuring contact angles, and subsequently calculated the surface free energy of PLA film. The contact angle and free energy of PLA surface were optimized at the treatment time of 30 sec, RF-power of 70 W, Ar gas flow rate of 6 lpm and air exposure time of 5 min. We analyzed the change of chemical functional groups on the surface of PLA film through XPS and were able to observe the change of polar functional groups such as -C=O, -CO, -COO on the surface of PLA film after one atmospheric pressure plasma treatment.

본 연구에서는 대기압 플라즈마를 이용하여 polylactic acid(PLA) 필름의 표면 특성 변화를 알아보았다. 극성 용매인 물과 비극성 용매인 Diiodomethane을 사용하여 표면의 접촉각을 측정하고, 이 값을 이용해 표면자유에너지 값을 계산하였다. 또한 대기압 플라즈마의 처리 조건에 따른 PLA 필름의 접촉각과 표면자유에너지 값을 최적화하였다. 그 결과 대기압 플라즈마 처리 시간 30 sec, RF-power 70 W, Ar 가스 유량은 6 lpm, 공기 중의 노출 시간은 5 min이었을 때가 가장 낮은 물 접촉각을 나타내었고, 표면자유에너지는 가장 높은 값을 나타내었다. XPS 분석을 통해서 대기압 플라즈마 처리 전 후 PLA 필름의 화학적 관능기의 변화를 분석하였으며, PLA 표면에 -C=O, -CO, -COO 등의 변화를 관찰하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Kumar, V., Bhunia, H. and Upadhyay, S.N., "Synthesis of Poly(Lactic Acid): A Review," J. Macromol. Sci-Pol. Rev., 45, 325-349(2005) https://doi.org/10.1080/15321790500304148
  2. Wang, S., Cui, W. and Bei, J., "Bulk and Surface Modifications of Polylactide," Anal. Bioanal. Chem., 381, 547-556(2005) https://doi.org/10.1007/s00216-004-2771-2
  3. Cheng, X., Canavan, H. E., Stein, M. J., Hull, J. R., Kweskin, S. J., Wagner, M. S., Somorjai, G. A., Castner, D. G. and Ratner, B. D., "Surface Chemical and Mechanical Properties of Plasma-Polymerized N-Isopropylacrylamide," Langmuir, 21, 7833-7841(2005) https://doi.org/10.1021/la050417o
  4. Inagaki, N., Narushima, K., Tsutsui, Y. and Ohyama, Y., "Surface Modification and Degradation of Poly(lactic acid) films by Ar-plasma," J. Adhes. Sci. Technol., 16(8), 1041-1054(2002) https://doi.org/10.1163/156856102760146156
  5. Jung, J. S., Yang, I. Y., Myung, S. W., Choi, H. S. and Kim, J. H., 'Fabrication of a Film Coated with Conducting Polymer Using One Atmospheric Pressure Plasma,' Polym-Korea, 31(4), 308-314 (2007)
  6. Ryan, M. E. and Badyal, J. P. S., "Surface Texturing of PTFE Film Using Nonequilibrium Plasmas," Macromolecules., 28, 1377 (1995) https://doi.org/10.1021/ma00109a008
  7. Huang, C. Y. and Chen, C. L., "The Effect of Plasma Surface Modification from a Rotary Plasma Reactor on the Styrene Grafting onto a Polypropylene Surface," Surf. Coat. Tech., 153, 194(2002) https://doi.org/10.1016/S0257-8972(01)01675-9
  8. Kwon, O. J., Tang, S., Lu, N. and Choi, H. S., "Surface Free Energy Change of Polypropylene Film Treated by Atmospheric Pressure plasma," Surf. Coating. Tech., 192, 1-10(2005) https://doi.org/10.1016/j.surfcoat.2004.09.018
  9. Zhao, Y., Tang, S., Myung, S. W., Lu, N. and Choi, H. S., "Effect of Washing on Surface Free Energy of Polystyrene Plate treated by RF Atmospheric Pressure Plasma," Polym. Test., 25, 327-332 (2006) https://doi.org/10.1016/j.polymertesting.2005.12.007
  10. Tang, S., Kwon, O. June., Lu, N. and Choi, H. S., "Surface Free Energy Changes of Stainless Steel after One Atmospheric Pressure Plasma Treatment," Korean. J. Chem. Eng., 21(6), 1218-1223 (2004) https://doi.org/10.1007/BF02719497
  11. Yang, I. Y., Myung, S. W., Choi, H. S. and Kim, I. H., 'Surface Modification of Polyurethane Film Using Atmospheric pressure Plasma,' Polym-Korea, 29(6), 581-587(2005)
  12. Tanaka, K., Inomata, T. and Kogoma, M., "Improvement in Adhesive Strength of Fluorinated Polymer Films by Atmospheric Pressure Glow Plasma," Thin. Solid. Films., 386, 217(2001) https://doi.org/10.1016/S0040-6090(00)01653-9
  13. Cui, N. Y. and Broun, N. M. D., "Modification of the Surface Properties of a Polypropylene (PP) Film Using an Air Dielectric Barrier Discharge Plasma," Appl. Surf. Sci., 189, 31(2002) https://doi.org/10.1016/S0169-4332(01)01035-2
  14. Mahlberg, R., Niemi, H. E. M., Denes, F. and Rowell, R. M., 'Effect of Oxygen and Hexa-methyldisiloxane Plasma on Morphology, Wettability and Adhesion Properties of Polypropylene and Lignocellulosics,' Int. J. Adhes. Adhes., 18, 283(1998) https://doi.org/10.1016/S0143-7496(98)00007-4
  15. Epailard, F. P., Chevt, B. and Brosse, J. C., "Reactivity of a Polypropylene Surface Modified in a Nitrogen Plasma," J. Adhes. Sci. Technol., 8, 455(1994) https://doi.org/10.1163/156856194X00339
  16. Ahmadi, N. S., Chehimi, M. M., Khonsari, F. A., Belkacemi, N. F., Amouroux, J. and Delamar, M., "A Physicochemical Study of Oxygen Plasma-Modified Polypropylene," Colloid. Surface. A., 105, 277(1995) https://doi.org/10.1016/0927-7757(95)03314-9
  17. Friedrich, J. F., Geng, S. h., Unger, W., Lippitz, A., Erdmann, J., Woll, H. V. Ch., Schertel, A. and Bierbaum, K., 'Plasma Functionalization and Reorientation of Macromolecules at Polymer Surfaces,' Surf. Coat. Tech., 664, 74-75(1995) https://doi.org/10.1016/0257-8972(95)08218-2
  18. Zhang, Y., Myung, S.-W., Choi, H.-S., Kim, I.-H. and Choi, J.-H., 'Optimum Conditions for the Surface Modification of Polyurethane by Oxygen Plasma Treatment,' J. Ind. Eng. Chem., 8, 236-240 (2002)
  19. Cho, D. L., Shin, K. H., Lee, W. J. and Kim, D. H., 'Improvement of Paint Adhesion to a Polypropylene Bumper by Plasma Treatment,' J. Adhes. Sci. Technol., 15, 653(2001) https://doi.org/10.1163/156856101750430404