DOI QR코드

DOI QR Code

Characteristics of aac(6')-Ib-cr Gene in Extended-Spectrum $\beta$-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Chungnam Area

충남지역에서 분리된 ESBL 생성 Escherichia coli와 Klebsiella pneumoniae에서 검출된 aac(6')-Ib-cr 유전자의 특성

Shin, So-Youn;Kwon, Kye-Chul;Park, Jong-Woo;Song, Jeong-Hoon;Ko, Young-Hyun;Sung, Ji-Youn;Shin, Hae-Won;Koo, Sun-Hoe
신소연;권계철;박종우;송정훈;고영현;성지연;신해원;구선회

  • Published : 20091200

Abstract

Background : Concomitant quinolone resistance in extended-spectrum $\beta$-lactamase (ESBL)-producing Enterobacteriaceae is a crucial problem in the clinical management of infections. In foreign countries, the fluoroquinolone acetylating aminoglycoside-(6)-N-acetyltransferase (aac[6']-Ib-cr) gene, a novel plasmid-mediated quinolone resistance determinant has been reported to occur in conjunction with qnr. We aim to investigate the prevalence and characteristics of concomitant aac(6')-Ib-cr and qnr expression in ESBL-producing Escherichia coli and Klebsiella pneumoniae in Korea. Methods : Between December 2007 and April 2008, we collected 60 and 69 clonally unrelated non-repetitive clinical isolates of ESBL-producing E. coli and K. pneumoniae, respectively. We studied the expressions of 11 types of ESBL-encoding genes, 4 types of 16s rRNA methylase genes; rmtA, rmtB, rmtC and armA, 3 types of qnr genes; qnrA, qnrB, qnrS and aac(6')-Ib. The presence of aac(6')-Ib-cr variants was detected by sequencing. The involvement of integrons was studied using multiplex PCR and sequencing of gene-cassette arrays. Conjugation experiments were performed to confirm plasmid-mediated resistance and the relationships among coharbored genes. Results : We observed a high prevalence of the cr variant (61.1%) of aac(6')-Ib, and the prevalence of this variant in qnr and aac(6')-Ib-coharboring isolates (67.4%) was higher than in qnr-negative isolates (51.7%). The high prevalence of the cr variant was significantly related to the high minimum inhibitory concentrations (MICs) of ciprofloxacin, tobramycin, and amikacin and indicated the statistically significant roles of qnrB, qnrS, rmtA, and rmtB in quinolone and aminoglycoside resistance. Conclusions : The aac(6')-Ib-cr variants were widespread and showed significant relation to the highlevel quinolone and aminoglycoside resistance in ESBL-producing E. coli and K. pneumoniae.

Keywords

References

  1. Podschun R and Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods and pathogenicity factors. Clin Microbiol Rev 1998;11:589-603
  2. Garau J, Xercavins M, Rodriguez-Carballeira M, G$\acute{o}$mez-Vera JR, Coll I, Vidal D, et al. Emergence and dissemination of quinoloneresistant Escherichia coli in the community. Antimicrob Agents Chemother 1999;43:2736-41
  3. Lautenbach E, Strom BL, Bilker WB, Patel JB, Edelstein PH, Fishman NO. Epidemiological investigation of fluoroquinolone resistance in infections due to extended-spectrum b-lactamase-producing Escherichia Coli and Klebsiella pneumoniae. Clin Infect Dis 2001;33:1288-94 https://doi.org/10.1086/322667
  4. Ling TK, Xiong J, Yu Y, Lee CC, Ye H, Hawkey PM. Multicenter antimicrobial susceptibility survey of gram-negative bacteria isolated from patients with community-acquired infections in the People's Republic of China. Antimicrob Agents Chemother 2006;50:374-8 https://doi.org/10.1128/AAC.50.1.374-378.2006
  5. Jacoby GA, Chow N, Waites KB. Prevalence of plasmid-mediated quinolone resistance. Antimicrob Agents Chemother 2003;47:559-62 https://doi.org/10.1128/AAC.47.2.559-562.2003
  6. Mart$\acute{i}$nez-Mart$\acute{i}$nez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet 1998;351:797-9 https://doi.org/10.1016/S0140-6736(97)07322-4
  7. Klugman KP and Levin BR. One enzyme inactivates two antibiotics. Nat Med 2006;12:19-20 https://doi.org/10.1038/nm0106-19
  8. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement M100-S17. Wayne, PA: CLSI 2007
  9. Kang JH, Bae IK, Kwon SB, Jeong SH, Lee JW, Lee WG. Prevalence of Ambler Class A extended-spectrum b-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol 2005;8:17-25. (강지혜, 배일권, 권수봉, 정석훈, 이종욱, 이위교 등. Ambler Class A extended-spectrum b-lactamase 생성 Escherichia coli와 Klebsiella pneumoniae의 국내 분리 현황. 대한임상미생물학회지 2005;8:17-25.)
  10. Cattoir V, Weill FX, Poirel L, Fabre L, Soussy CJ, Nordmann P. Prevalence of qnr genes in Salmonella in France. J Antimicrob Chemother 2007;59:751-4 https://doi.org/10.1093/jac/dkl547
  11. Bogaerts P, Galimand M, Bauraing C, Deplano A, Vanhoof R, De Mendonca R, et al. Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. J Antimicrob Chemother 2007;59:459-64 https://doi.org/10.1093/jac/dkl527
  12. Park YJ, Lee S, Yu JK, Woo GJ, Lee K, Arakawa Y. Co-production of 16S rRNA methylases and extended-spectrum b-lactamases in AmpC-producing Enterobacter cloacae, Citrobacter freundii and Serratia marcescens in Korea. J Antimicrob Chemother 2006;58:907-8 https://doi.org/10.1093/jac/dkl317
  13. Fihman V, Lartigue MF, Jacquier H, Meunier F, Schnepf N, Raskine L, et al. Appearance of aac(6′)-Ib-cr gene among extended-spectrum b-lactamase-producing Enterobacteriaceae in a French hospital. J Infect 2008;56:454-9 https://doi.org/10.1016/j.jinf.2008.03.010
  14. Dillon B, Thomas L, Mohmand G, Zelynski A, Iredell J. Multiplex PCR for screening of integrons in bacterial lysates. J Microbiol Methods 2005;62:221-32 https://doi.org/10.1016/j.mimet.2005.02.007
  15. White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the enterobacteriaceae. Antimicrob Agents Chemother 2001;45:2658-61 https://doi.org/10.1128/AAC.45.9.2658-2661.2001
  16. Jeong JY, Yoon HJ, Kim ES, Lee Y, Choi SH, Kim NJ, et al. Detection of qnr in clinical isolates of Escherichia coli from Korea. Antimicrob Agents Chemother 2005;49:2522-4 https://doi.org/10.1128/AAC.49.6.2522-2524.2005
  17. Kim MH, Sung JY, Park JW, Kwon GC, Koo SH. Coproduction of qnrB and armA from extended-spectrum b-lactamase-producing Klebsiella pneumoniae. Korean J Lab Med 2007;27:428-36. (김문희, 성지연, 박종우, 권계철, 구선회. Extended-spectrum b-lactamase를생성하는 Klebsiella pneumoniae에서의 qnrB와 armA 유전자의동시생성.대한진단검사의학회지 2007;27:428-36.)
  18. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991;19:6823-31 https://doi.org/10.1093/nar/19.24.6823
  19. Poirel L, Pitout JD, Calvo L, Rodriguez-Martinez JM, Church D, Nordmann P. In vivo selection of fluoroquinolone-resistant Escherichia coli isolates expressing plasmid-mediated quinolone resistance and expanded-spectrum b-lactamase. Antimicrob Agents Chemother 2006;50:1525-7 https://doi.org/10.1128/AAC.50.4.1525-1527.2006
  20. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 2006;6:629-40 https://doi.org/10.1016/S1473-3099(06)70599-0
  21. Jiang Y, Zhou Z, Qian Y, Wei Z, Yu Y, Hu S, et al. Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in extended-spectrum $\beta$-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother 2008;61:1003-6 https://doi.org/10.1093/jac/dkn063
  22. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC. Prevalence in the United States of aac($6^{\prime}$)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006;50:3953-5 https://doi.org/10.1128/AAC.00915-06
  23. Szab$\acute{o}$ D, Kocsis B, R$\acute{o}$kusz L, Szentandr$\acute{a}$ssy J, Katona K, Krist$\acute{o}$f K, et al. First detection of plasmid-mediated, quinolone resistance determinants qnrA, qnrB, qnrS and aac(6′)-Ib-cr in extended-spectrum blactamase (ESBL)-producing Enterobacteriaceae in Budapest, Hungary. J Antimicrob Chemother 2008;62:630-2 https://doi.org/10.1093/jac/dkn206
  24. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, et al. Fluoroquinolone-modifying enzyme: a n adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006;12:83-8 https://doi.org/10.1038/nm1347
  25. Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother 2006;50:2872-4 https://doi.org/10.1128/AAC.01647-05
  26. Fluit AC and Schmitz FJ. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 1999;18:761-70 https://doi.org/10.1007/s100960050398
  27. Collis CM and Hall RM. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother 1995;39:155-62 https://doi.org/10.1128/AAC.39.1.155
  28. Park YJ, Yu JK, Lee S, Oh EJ, Woo GJ. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J Antimicrob Chemother 2007;60:868-71 https://doi.org/10.1093/jac/dkm266

Cited by

  1. Genetic Basis of Multidrug-resistant Acinetobacter baumannii Clinical Isolates from Three University Hospitals in Chungcheong Province, Korea vol.30, pp.5, 2009, https://doi.org/10.3343/kjlm.2010.30.5.498
  2. A Survey of β-Lactamase and 16S rRNA Methylase Genes Among Fluoroquinolone-Resistant Escherichia coli Isolates and Their Horizontal Transmission in Shandong, China vol.8, pp.12, 2011, https://doi.org/10.1089/fpd.2011.0868
  3. Fecal Colonization ofEnterobacteriaceaeCarrying Plasmid-Mediated Quinolone Resistance Determinants in Korea vol.17, pp.4, 2011, https://doi.org/10.1089/mdr.2011.0040
  4. Prevalence of β-Lactamase and 16S rRNA Methylase Genes Among ClinicalEscherichia coliIsolates Carrying Plasmid-Mediated Quinolone Resistance Genes from Animals vol.19, pp.3, 2009, https://doi.org/10.1089/mdr.2012.0179
  5. Occurrence of virulence genes, 16S rRNA methylases, and plasmid-mediated quinolone resistance genes in CTX-M-producing Escherichia coli from Pakistan vol.33, pp.3, 2009, https://doi.org/10.1007/s10096-013-1970-1
  6. Prevalence of Plasmid-Mediated Quinolone Resistance Genes among Extended-Spectrum β -Lactamase-Producing Klebsiella pneumoniae Human Isolates in Iran vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/434391
  7. Antibacterial resistance pattern among Escherichia coli strains isolated from Mansoura hospitals in Egypt with a special reference to quinolones vol.9, pp.9, 2009, https://doi.org/10.5897/ajmr2014.7351
  8. 충청지역의 사람과 닭으로부터 분리된 Proteus속에 속하는 균주에 존재하는 항균제 내성유전자의 유전형 분석 vol.48, pp.4, 2009, https://doi.org/10.15324/kjcls.2016.48.4.327
  9. First Report of Extended-Spectrum β-Lactamases Among Clinical Isolates of Klebsiella pneumoniae in Gaza Strip, Palestine vol.23, pp.2, 2017, https://doi.org/10.1089/mdr.2016.0089
  10. Characterization of Quinolone Resistant Determinants in Morganella morganii Isolated from Pet Turtles vol.12, pp.4, 2009, https://doi.org/10.3923/ajava.2017.189.196
  11. First Report of Klebsiella oxytoca Strain Simultaneously Producing NDM-1, IMP-4, and KPC-2 Carbapenemases vol.61, pp.9, 2009, https://doi.org/10.1128/aac.00877-17
  12. Extended-Spectrum β-Lactamases among Enterobacteriaceae Isolated from Urinary Tract Infections in Gaza Strip, Palestine vol.2019, pp.None, 2009, https://doi.org/10.1155/2019/4041801
  13. Characterization of Quinolone-Resistant Determinants in Tribe Proteeae Isolated from Pet Turtles with High Prevalence of qnrD and Novel gyrB Mutations vol.25, pp.4, 2009, https://doi.org/10.1089/mdr.2018.0041
  14. Detection of multidrug-resistant Enterobacteriaceae isolated from river waters flowing to the Guanabara Bay and from clinical samples of hospitals in Rio de Janeiro, Brazil vol.39, pp.None, 2019, https://doi.org/10.7705/biomedica.v39i0.4391
  15. High-risk clones of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from the University Hospital Establishment of Oran, Algeria (2011–2012) vol.16, pp.7, 2009, https://doi.org/10.1371/journal.pone.0254805