Analysis on thermal stress deformation of rotary air-preheater in a thermal power plant

Wang, Hong-Yue;Zhao, Lingling;Xu, Zhigao;Kim, Hyung-Taek

  • Published : 20090500

Abstract

Thermal stress deformation is a disadvantage of the rotary air preheater, which results in leakages of fluids and decrease of efficiency of the thermal system. To evaluate the results of deformation during its operation, the temperature distribution of storage materials is calculated by solving a simplified model. In this developed method, the effect of dimensionless parameters on the temperature distribution of rotary air preheater was investigated and compared with the results of modified heat transfer coefficient method. By solving coordination, structural and geometrical equations, and boundary condition in thermal-elastic theory, the thermal stress distributions in rotary air preheater are obtained in an analytical method. Experimental results are obtained by employing factorial design values of rotary air preheater for the validation of the calculation data. Good agreement has been yielded by comparing the analytical data and experimental data. Therefore, some conclusions necessary to undertake an adequate adjustment of thermal stress deformation have also been formulated, and online monitoring of the clearance of radial seals is proposed.

Keywords

References

  1. R. S. Shah, Applied Thermal Engineering, 19, 685 (1999) https://doi.org/10.1016/S1359-4311(98)00087-8
  2. Z. Y. Chang, Mechanism and Machine Theory, 36, 143 (2001) https://doi.org/10.1016/S0094-114X(00)00038-0
  3. T. Kant, Journal of Thermal Stresses, 17, 229 (1994) https://doi.org/10.1080/01495739408946257
  4. T. Skeipko, Heat Transfer Eng., 18, 56 (1997) https://doi.org/10.1080/01457639708939890
  5. T. Skiepko, Heat Recov. Syst., 8, 469 (1998)
  6. T. Skiepko, Heat Transfer Eng., 27, 14 (1993)
  7. V. I. Gromovyk, J. Appl. Maths Mechs., 59, 159 (1995) https://doi.org/10.1016/0021-8928(95)00019-L
  8. M. Sunar, J. of Mat. Pro. Tech., 123, 172 (2006)
  9. A. Robaldo, Computers and Structures, 84, 1236 (2006) https://doi.org/10.1016/j.compstruc.2006.01.022
  10. F. A. Creswick, Ind. Math., 8, 61 (1957)
  11. J. R. Mondt, ASME J. Eng. Power, 86, 121 (1964)
  12. T. J. Lambertson, Trans. ASME, 15, 57 (1957)
  13. W. M. Kays, McGraw Hill Co. (1984)
  14. G. D. Banke, ASME, J., Eng., Power, 86, 105 (1964) https://doi.org/10.1115/1.3677551
  15. N. Ghodsi, Applied Thermal Engineering, 23, 571 (2003) https://doi.org/10.1016/S1359-4311(02)00226-0
  16. M. Djuric and J. Hung. Indus. Chem., 17, 1 (1989)
  17. K. C. Leong, Heat Recov. Syst. CHP, 11, 461 (1991) https://doi.org/10.1016/0890-4332(91)90048-9
  18. D. S. Beck, Trans. ASME, 116, 574 (1994)
  19. G. D. Bahnke, ASME J. Eng. Power, 86, 105 (1964) https://doi.org/10.1115/1.3677551
  20. A. J. Willmott, Journal Institute of Energy, 66, 54 (1999)
  21. T. Skiepko, Int. J. Heat Mass Transf., 31, 2227 (1988) https://doi.org/10.1016/0017-9310(88)90155-X
  22. T. Skiepko, Int. J Heat Mass Transf., 32, 1443 (1989) https://doi.org/10.1016/0017-9310(89)90068-9
  23. F.W. Larson, Int. J. Heat Mass Transf., 10, 149 (1967) https://doi.org/10.1016/0017-9310(67)90095-6
  24. A. Klinkenberg, Ind. Eng. Chem., 46, 2286 (1954)
  25. F.W. Schmidt, Int. J. Heat Mass Transf., 100, 737 (1978)
  26. J. Szego, Int. J. Heat Mass Transf., 100, 740 (1978)
  27. D.Y. Yoon, K. H. Choi, Y. H. Kim and L. H. Kim, Korean J. Chem. Eng., 25, 217 (2008) https://doi.org/10.1007/s11814-008-0039-9
  28. B. J. Drobnic, Int. J. Heat Mass Transf., 10, 161 (2006)
  29. S. Poncet, Int. J. Heat Mass Transf., 50, 1528 (2007) https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.028
  30. http://www.howden.com/en