DOI QR코드

DOI QR Code

A Novel Antifungal Analog Peptide Derived from Protaetiamycine

  • Lee, Juneyoung (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hong, Hyun Joo (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Jin-Kyoung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Hwang, Jae-Sam (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yangmee (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Dong Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2009.09.07
  • Accepted : 2009.09.22
  • Published : 2009.11.30

Abstract

Previously, the 9-mer analog peptides, 9Pbw2 and 9Pbw4, were designed based on a defensin-like peptide, protaetiamycine isolated from Protaetia brevitarsis. In this study, antifungal effects of the analog peptides were investigated. The antifungal susceptibility testing exhibited that 9Pbw4 contained more potent antifungal activities than 9Pbw2. A PI influx assay confirmed the effects of the analog peptides and demonstrated that the peptides exerted their activity by a membrane-active mechanism, in an energy-independent manner. As the noteworthy potency of 9Pbw4, the mechanism(s) of 9Pbw4 were further investigated. The membrane studies, using rhodamine-labeled giant unilamellar vesicle (GUV) and fluorescein isothiocyanate (FITC)-dextran loaded liposome, suggested that the membrane-active mechanism of 9Pbw4 could have originated from the pore-forming action and the radii of pores was presumed to be anywhere from 1.8 nm to 3.3 nm. These results were confirmed by 3D-flow cytometric contour-plot analysis. The present study suggests a potential of 9Pbw4 as a novel antifungal peptide.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Alexander, B.D., and Perfect, J.R. (1997). Antifungal resistance trends towards the year 2000. Implications for therapy and new approaches. Drugs 54, 657-678 https://doi.org/10.2165/00003495-199754050-00002
  2. Belokoneva, O.S., Satake, H., Mal’tseva, E.L., Pal’mina, N.P., Villegas, E., Nakajima, T., and Corzo, G. (2004). Pore formation of phospholipid membranes by the action of two hemolytic arachnid peptides of different size. Biochim. Biophys. Acta 1664, 182-188 https://doi.org/10.1016/j.bbamem.2004.05.007
  3. Bohrer, M.P., Deen, W.M., Robertson, C.R., Troy, J.L., and Brenner, B.M. (1979). Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J. Gen. Physiol. 74, 583-593 https://doi.org/10.1085/jgp.74.5.583
  4. Boman, H.G. (1995). Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92 https://doi.org/10.1146/annurev.iy.13.040195.000425
  5. Denning, D.W. (1991). Epidemiology and pathogenesis of systemic fungal infections in the immunocompromised host. J. Antimicrob. Chemother. 28 Suppl B, 1-16 https://doi.org/10.1093/jac/28.suppl_B.1
  6. Ellis, M., Richardson, M., and de Pauw, B. (2000). Epidemiology. Hosp. Med. 61, 605-609 https://doi.org/10.12968/hosp.2000.61.9.1415
  7. Gyurko, C., Lendenmann, U., Helmerhorst, E.J., Troxler, R.F., and Oppenheim, F.G. (2001). Killing of Candida albicans by histatin 5: cellular uptake and energy requirement. Antonie Van Leeuwenhoek 79, 297-309 https://doi.org/10.1023/A:1012070600340
  8. Hancock, R.E., Brown, K.L., and Mookherjee, N. (2006). Host defence peptides from invertebrates--emerging antimicrobial strategies. Immunology 211, 315-322
  9. Hayashi, H., and Suzuki, Y. (1998). Regulation of intracellular pH during $H^+$ coupled oligopeptide absorption in enterocytes from guinea-pig ileum. J. Physiol. 511, 573-586 https://doi.org/10.1111/j.1469-7793.1998.573bh.x
  10. Hoffmann, J.A. (1995). Innate immunity of insects. Curr. Opin. Immunol. 7, 4-10 https://doi.org/10.1016/0952-7915(95)80022-0
  11. Hopp, T.P., and Woods, K.R. (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78, 3824-3828 https://doi.org/10.1073/pnas.78.6.3824
  12. Hwang, J., Kang, B., Kim, S.R., Yun, E., Park, K., Jeon, J.P., Nam, S., Suh, H., Hong, M.Y., and Kim, I. (2008). Molecular characterization of a defensin-like peptide from larvae of a beetle, Protaetia brevitarsis. Int. J. Ind. Entomol. 17, 131-135
  13. Jungblut, P., and Thiede, B. (1997). Protein identification from 2-DE gels by MALDI mass spectrometry. Mass Spectrom. Rev. 16, 145-162 https://doi.org/10.1002/(SICI)1098-2787(1997)16:3<145::AID-MAS2>3.0.CO;2-H
  14. Klein, R.S., Harris, C.A., Small, C.B., Moll, B., Lesser, M., and Friedland, G.H. (1984). Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N. Engl. J. Med. 311, 354-358 https://doi.org/10.1056/NEJM198408093110602
  15. Kontoyiannis, D.P., Mantadakis, E., and Samonis, G. (2003). Systemic mycoses in the immunocompromised host: an update in antifungal therapy. J. Hosp. Infect. 53, 243-258 https://doi.org/10.1053/jhin.2002.1278
  16. Kullberg, B.J., and de Pauw, B.E. (1999). Therapy of invasive fungal infections. Neth. J. Med. 55, 118-127 https://doi.org/10.1016/S0300-2977(99)00022-4
  17. Laurent, T.C., and Granath, K.A. (1967). Fractionation of dextran and Ficoll by chromatography on Sephadex G-200. Biochim. Biophys. Acta 136, 191-198 https://doi.org/10.1016/0304-4165(67)90063-3
  18. Lee, J., and Lee, D.G. (2009). Antifungal properties of a peptide derived from the signal peptide of the HIV-1 regulatory protein. Rev. FEBS Lett. 583, 1544-1547 https://doi.org/10.1016/j.febslet.2009.03.063
  19. Lee, J.Y., Lee, S.A., Kim, J.K., Chae, C.B., and Kim, Y. (2009a). Interaction models of substrate peptides and beta-secretase studied by NMR spectroscopy and molecular dynamics simulation Mol. Cells 27, 651-656 https://doi.org/10.1007/s10059-009-0086-z
  20. Lee, J., Choi, Y., Woo, E.R., and Lee, D.G. (2009b). Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina. Biochem. Biophys. Res. Commun. 379, 676-680 https://doi.org/10.1016/j.bbrc.2008.12.030
  21. Makovitzki, A., and Shai, Y. (2005). pH-dependent antifungal lipopeptides and their plausible mode of action. Biochemistry 44, 9775-9784 https://doi.org/10.1021/bi0502386
  22. Makovitzki, A., Avrahami, D., and Shai, Y. (2006). Ultrashort antibacterial and antifungal lipopeptides. Proc. Natl. Acad. Sci. USA 103, 15997-16002 https://doi.org/10.1073/pnas.0606129103
  23. Mancheno, J.M., Onaderra, M., Martinez del Pozo, A., Diaz- Achirica, P., Andreu, D., Rivas, L., and Gavilanes, J.G. (1996). Release of lipid vesicle contents by an antibacterial cecropin Amelittin hybrid peptide. Biochemistry 35, 9892-9899 https://doi.org/10.1021/bi953058c
  24. Mangoni, M.E., Aumelas, A., Charnet, P., Roumestand, C., Chiche, L., Despaux, E., Grassy, G., Calas, B., and Chavanieu, A. (1996). Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett. 383, 93-98 https://doi.org/10.1016/0014-5793(96)00236-0
  25. Merrifield, B. (1986). Solid phase synthesis. Science 232, 341-347 https://doi.org/10.1126/science.3961484
  26. Mukherjee, P.K., Chandra, J., Kuhn, D.M., and Ghannoum, M.A. (2003). Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun. 71, 4333-4340 https://doi.org/10.1128/IAI.71.8.4333-4340.2003
  27. Odds, F.C., Brown, A.J., and Gow, N.A. (2003). Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272-279 https://doi.org/10.1016/S0966-842X(03)00117-3
  28. Park, Y., Lee, D.G., Jang, S.H., Woo, E.R., Jeong, H.G., Choi, C.H., and Hahm, K.S. (2003). A Leu-Lys-rich antimicrobial peptide: activity and mechanism. Biochim. Biophys. Acta 1645, 172-182 https://doi.org/10.1016/S1570-9639(02)00541-1
  29. Park, S.C., Kim, M.H., Hossain, M.A., Shin, S.Y., Kim, Y., Stella, L., Wade, J.D., Park, Y., and Hahm, K.S. (2008). Amphipathic alpha- helical peptide, HP (2-20), and its analogues derived from Helicobacter pylori: pore formation mechanism in various lipid compositions. Biochim. Biophys. Acta 1778, 229-241 https://doi.org/10.1016/j.bbamem.2007.09.020
  30. Pina-Vaz, C., Sansonetty, F., Rodrigues, A.G., Costa-Oliveira, S., Tavares, C., and Martinez-de-Oliveira, J. (2001). Cytometric approach for a rapid evaluation of susceptibility of Candida strains to antifungals. Clin. Microbiol. Infect. 7, 609-618 https://doi.org/10.1046/j.1198-743x.2001.00307.x
  31. Ramani, R., Ramani, A., and Wong, S.J. (1997). Rapid flow cytometric susceptibility testing of Candida albicans. J. Clin. Microbiol. 35, 2320-2324
  32. Rex, S. (1996). Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophys. Chem. 58, 75-85 https://doi.org/10.1016/0301-4622(95)00087-9
  33. Selsted, M.E., and Ouellette, A.J. (2005). Mammlian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551-557 https://doi.org/10.1038/ni1206
  34. Sheehan, D.J., Hitchcock, C.A., and Sibley, C.M. (1999). Current and emerging azole antifungal agents. Clin. Microbiol. Rev. 12, 40-79
  35. Shin, S., Kim, J.K., Lee, J.Y., Jung, K.W., Hwang, J.S., Lee, J., Lee, D.G., Kim, I., Shin, S.Y., and Kim, Y. (2009). Design of potent 9- mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action. J. Pept. Sci. 15, 559-568 https://doi.org/10.1002/psc.1156
  36. Suzuki, T., Fujikura, K., Higashiyama, T., and Takata, K. (1997). DNA staining for fluorescence and laser confocal microscopy. J. Histochem. Cytochem. 45, 49-53 https://doi.org/10.1177/002215549704500107
  37. Taylor, K., Barran, P.E., and Dorin, J.R. (2008). Structure-activity relationships in beta-defensin peptides. Biopolymers 90, 1-7 https://doi.org/10.1002/bip.20900
  38. Veerman, E.C., Valentijn-Benz, M., Nazmi, K., Ruissen, A.L., Walgreen- Weterings, E., van Marle, J., Doust, A.B., van’t Hof, W., Bolscher, J.G., and Amerongen, A.V. (2007). Energy depletion protects Candida albicans against antimicrobial peptides by rigidifying its cell membrane. J. Biol. Chem. 282, 18831-18841 https://doi.org/10.1074/jbc.M610555200
  39. Volkoff, A.N., Rocher, J., D’Alencon, E., Bouton, M., Landais, I., Quesada-Moraga, E., Vey, A., Fournier, P., Mita, K., and Devauchelle, G. (2003). Characterization and transcriptional profiles of three Spodoptera frugiperda genes encoding cysteine-rich peptides. A new class of defensin-like genes from lepidopteran insects? Gene 13, 43-53
  40. Wesołowska, O., Michalak, K., Maniewska, J., and Hendrich, A.B. (2009). Giant unilamellar vesicles - a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim. Pol. 56, 33-39
  41. Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415, 389-395 https://doi.org/10.1038/415389a
  42. Zelezetsky, I., Pacor, S., Pag, U., Papo, N., Shai, Y., Sahl, H.G., and Tossi, A. (2005). Controlled alteration of the shape and conformational stability of alpha-helical cell-lytic peptides: effect on mode of action and cell specificity. Biochem. J. 390, 177-188 https://doi.org/10.1042/BJ20042138

Cited by

  1. Characterization and cDNA Cloning of a Cecropin-Like Antimicrobial Peptide, Papiliocin, from the Swallowtail Butterfly, Papilio xuthus vol.29, pp.4, 2009, https://doi.org/10.1007/s10059-010-0050-y
  2. Anti-Candida Property of a Lignan Glycoside Derived from Styrax japonica S. et Z. via Membrane-Active Mechanisms vol.29, pp.6, 2010, https://doi.org/10.1007/s10059-010-0072-5
  3. Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity vol.20, pp.8, 2009, https://doi.org/10.4014/jmb.1004.04041
  4. Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris vol.400, pp.3, 2009, https://doi.org/10.1016/j.bbrc.2010.08.063
  5. Characterization and cDNA Cloning of a Defensin-Like Peptide, Harmoniasin, from Harmonia axyridis vol.22, pp.11, 2012, https://doi.org/10.4014/jmb.1206.06064
  6. 흰점박이꽃무지 유래 항균 펩타이드 프로테티아마이신 2의 항염증활성 vol.29, pp.11, 2019, https://doi.org/10.5352/jls.2019.29.11.1218