DOI QR코드

DOI QR Code

The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs

Im, Ji-Sun;Kim, Sang-Jin;Kang, Phil-Hyun;Lee, Young-Seak

  • Published : 20090000

Abstract

In order to increase the conductivity of carbon nanofiber sheet, conductive multi wall carbon nanotubes (MWCNTs) was added into the carbon fibers. The dispersion of MWCNTs into the fibers and adhesion between carbon fibers and MWCNTs were improved through fluorine modification on surface of MWCNTs. By fluorination treatment, hydrophobic functional group was introduced on the surface of MWCNTs improving the affinity on interface between two carbon materials. These nanofibers made by electrospinning method were treated at different temperature in order to investigate the effect of temperature. According to the increment of temperature, the better conductivity of carbon nanofibers sheet was obtained due to the better oriented carbon structure. Eventually, the improved conductivity of carbon nanofiber sheet was resulted showing 27 S/cm.

Keywords

References

  1. T.C. Clancy, T.S. Gates, Polymer 47 (2006) 5990 https://doi.org/10.1016/j.polymer.2006.05.062
  2. J. Wu, I. Houng, S.M. Park, S.Y. Lee, M.S. Kim, Carbon Lett. 9 (2008) 137 https://doi.org/10.5714/CL.2008.9.2.137
  3. Y.C. Shin, D.K. Lee, K.T. Lee, K.H. Ahn, B.S. Kim, J. Ind. Eng. Chem. 14 (2008) 515 https://doi.org/10.1016/j.jiec.2008.02.002
  4. E.J. Ra, K.H. An, K.K. Kim, S.Y. Jeong, Y.H. Lee, Chem. Phys. Lett. 413 (2005) 188 https://doi.org/10.1016/j.cplett.2005.07.061
  5. I.K. Kwon, S. Kidoaki, T. Matsuda, Biomaterials 26 (2005) 3929 https://doi.org/10.1016/j.biomaterials.2004.10.007
  6. Y.S. Song, J.R. Youn, Carbon 44 (2006) 710 https://doi.org/10.1016/j.carbon.2005.09.034
  7. G. Otieno, J.Y. Kim, J. Ind. Eng. Chem. 14 (2008) 187 https://doi.org/10.1016/j.jiec.2007.09.004
  8. S. Yang, I.J. Kim, M.J. Jeon, K. Kim, S.I. Moon, K.H. An, J. Ind. Eng. Chem. 14 (2008) 365 https://doi.org/10.1016/j.jiec.2008.01.013
  9. H. Yui, G. Wu, H. Sano, M. Sumita, K. Kino, Polymer 47 (2006) 3599 https://doi.org/10.1016/j.polymer.2006.03.064
  10. Y.S. Lee, J. Fluorine Chem. 128 (2007) 3
  11. J.S. Im, S.J. Park, Y.S. Lee, J. Colloid Interface Sci. 314 (2007) 32 https://doi.org/10.1016/j.jcis.2007.05.033
  12. J.S. Im, S.J. Park, T.J. Kim, Y.H. Kim, Y.S. Lee, J. Colloid Interface Sci. 318 (2008) 42 https://doi.org/10.1016/j.jcis.2007.10.024
  13. J.S. Im, O. Kwon, Y.H. Kim, S.J. Park, Y.S. Lee, Microporous Mesoporous Mater. 115 (2008) 514 https://doi.org/10.1016/j.micromeso.2008.02.027
  14. S.K. Nataraj, B.H. Kim, J.H. Yun, D.H. Lee, T.M. Aminabhavi, K.S. Yang, Carbon Lett. 9 (2008) 108 https://doi.org/10.5714/CL.2008.9.2.108
  15. Y.S. Lee, M.I. Kim, J.S. Im, S.J. In, Carbon Lett. 9 (2008) 200 https://doi.org/10.5714/CL.2008.9.3.200
  16. G. Sun, X. Li, Y. Qu, X. Wang, H. Yan, Y. Zhang, Mater. Lett. 62 (2008) 703 https://doi.org/10.1016/j.matlet.2007.06.035
  17. X. Xu, S. Huang, Mater. Lett. 61 (2007) 4235 https://doi.org/10.1016/j.matlet.2007.01.059
  18. J.S. Roh, Carbon Lett. 9 (2008) 127 https://doi.org/10.5714/CL.2008.9.2.127
  19. S. Bhardwaj, M. Sharon, T. Ishihara, S. Jayabhaye, R. Afre, T. Soga, M. Sharon, Carbon Lett. 8 (2007) 285 https://doi.org/10.5714/CL.2007.8.4.285

Cited by

  1. The impact of fluorinated MWCNT additives on the enhanced dynamic mechanical properties of e-beam-cured epoxy vol.70, pp.5, 2010, https://doi.org/10.1016/j.compscitech.2010.01.007
  2. Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference vol.364, pp.1, 2009, https://doi.org/10.1016/j.colsurfa.2010.05.015
  3. pH and electro-responsive release behavior of MWCNT/PVA/PAAc composite microcapsules vol.368, pp.1, 2009, https://doi.org/10.1016/j.colsurfa.2010.07.010
  4. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam vol.45, pp.11, 2009, https://doi.org/10.1016/j.materresbull.2010.07.005
  5. Effective electromagnetic interference shielding by electrospun carbon fibers involving Fe2O3/BaTiO3/MWCNT additives vol.124, pp.1, 2009, https://doi.org/10.1016/j.matchemphys.2010.06.062
  6. Photocatalytic treatment of acidic waste water by electrospun composite nanofibers of pH-sensitive hydrogel and TiO2 vol.64, pp.22, 2009, https://doi.org/10.1016/j.matlet.2010.08.001
  7. Sustained release behavior of pH‐responsive poly(vinyl alcohol)/poly(acrylic acid) hydrogels containing activated carbon fibers vol.120, pp.2, 2009, https://doi.org/10.1002/app.33242
  8. Preparation and Characterization of High Performance Multiwall Carbon Nanotube Conducting Films vol.550, pp.1, 2011, https://doi.org/10.1080/15421406.2011.600183
  9. 알킬화가 다중벽탄소나노튜브로 강인화된 에폭시수지의 계면 및 열전도도에 미치는 영향 vol.35, pp.6, 2009, https://doi.org/10.7317/pk.2011.35.6.548
  10. Effect of thermal fluorination on the hydrogen storage capacity of multi-walled carbon nanotubes vol.36, pp.2, 2009, https://doi.org/10.1016/j.ijhydene.2010.10.024
  11. Improved anti-oxidation properties of electrospun polyurethane nanofibers achieved by oxyfluorinated multi-walled carbon nanotubes and aluminum hydroxide vol.126, pp.3, 2009, https://doi.org/10.1016/j.matchemphys.2010.12.061
  12. Effects of heat-treatment temperature on carbon-based composites with added illite vol.12, pp.2, 2009, https://doi.org/10.5714/cl.2011.12.2.095
  13. High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber vol.384, pp.1, 2009, https://doi.org/10.1016/j.colsurfa.2011.04.001
  14. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage vol.13, pp.33, 2011, https://doi.org/10.1039/c1cp21815h
  15. Surface modification of electrospun spherical activated carbon for a high-performance biosensor electrode vol.158, pp.1, 2009, https://doi.org/10.1016/j.snb.2011.05.058
  16. Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors vol.132, pp.12, 2009, https://doi.org/10.1016/j.jfluchem.2011.06.046
  17. Rheological and thermal properties of epoxy nanocomposites reinforced with alkylated multi‐walled carbon nanotubes vol.61, pp.9, 2012, https://doi.org/10.1002/pi.4215
  18. Electrical conductivity of vapor‐grown carbon nanofiber/polyester textile‐based composites vol.130, pp.4, 2009, https://doi.org/10.1002/app.39447
  19. 무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향 vol.37, pp.4, 2009, https://doi.org/10.7317/pk.2013.37.4.449
  20. Copper-coated TiN nanofibers with high electrical conductivity: a new advance in conductive one-dimensional nanostructures vol.3, pp.28, 2015, https://doi.org/10.1039/c5tc01430a
  21. Functionalization of PAN-Based Electrospun Carbon Nanofibers by Acid Oxidation: Study of Structural,Electrical and Mechanical Properties vol.23, pp.11, 2009, https://doi.org/10.1080/1536383x.2015.1020057
  22. 함산소불화 활성탄소섬유를 이용한 저농도 크롬이온의 흡착 특성 vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1050
  23. Electrical behavior of dual‐morphology polyaniline vol.133, pp.41, 2009, https://doi.org/10.1002/app.44091
  24. Characterization of photocatalytic composite nanofiber yarns with respect to their tensile properties vol.47, pp.5, 2009, https://doi.org/10.1177/1528083716679156
  25. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity vol.10, pp.1, 2009, https://doi.org/10.1038/s41467-019-13430-9
  26. Chemical and Morphological Transition of Poly(acrylonitrile)/Poly(vinylidene Fluoride) Blend Nanofibers during Oxidative Stabilization and Incipient Carbonization vol.10, pp.6, 2009, https://doi.org/10.3390/nano10061210
  27. Extraction of Lead through Functionalized Carbon Nanotubes and Estimation of the Measurement Uncertainty vol.53, pp.10, 2009, https://doi.org/10.1080/00032719.2020.1711521
  28. Direct Attack and Indirect Transfer Mechanisms Dominated by Reactive Oxygen Species for Photocatalytic H2O2 Production on g-C3N4 Possessing Nitrogen Vacanci vol.11, pp.None, 2009, https://doi.org/10.1021/acscatal.1c03103
  29. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices vol.32, pp.44, 2009, https://doi.org/10.1088/1361-6528/ac18d5