DOI QR코드

DOI QR Code

Enhanced mangnetoelectric voltage in multiferroic particulate $Ni_{0.83}Co_{0.15}Cu_{0.02}Fe_{1.9}O_{4-\delta}$/$PbZr_{0.52}Ti_{0.48}O_3$ composites – dielectric, piezoelectric and magnetic properties

Ramanaa, M. Venkata;Reddy, N. Ramamanohar;Sreenivasulu, G.;Siva kumar, K.V.;Murty, B.S.;Murthy, V.R.K.

  • Published : 20090800

Abstract

Multiferroic particulate composites of $Ni_{0.83}Co_{0.15}Cu_{0.02}Fe_{1.9}O_{4-\delta}$ - NCCF and lead zirconate titanate (PZT) were prepared conventional ceramic method. The generic formulae x NCCF + (1-x) PZT where x = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mole fractions. The presence of two phases in multiferroic was confirmed with XRD technique. The dielectric constant and loss tangent were studied as a function of frequency (100 Hz to 1 M Hz) and temperature (30-500 $^{\circ}C$). The piezoelectric coefficient $d_{33}$ were also studied on these particulate composites. The hysteresis behaviour was studied to understand the magnetic properties such as saturation magnetization (Ms) and magnetic moment ($\mu_B$). The static magnetoelectric (ME) voltage coefficient was measured as a function of dc magnetic bias field. A high value of ME output (3151 mV/Oe.cm) was obtained in the composite containing 50% highly magnetostrictive ferrite component NCCF - 50% highly piezoelectric ferroelectric component PZT. These multiferroic particulate composites are used as phase shifters, magnetic sensors, cables etc.

Keywords

References

  1. L.P.M. Bracke, R.G. van Vliet, Int. J. Electron. 51 (1981) 255 https://doi.org/10.1080/00207218108901330
  2. P. Curie, J. Physique 3e series, 3 (1894) 393
  3. L.D. Landau, E. Lifshitz, Electrodynamics of Continuous Media, Addison- esley: Translation of a Russian edition of 1958, 1960
  4. I.E. Dzyaloshinskii, Sov. Phys. – JETP 37 (1960) 628
  5. D.N. Astrov, Sov. Phys. – JETP 11 (1960) 708
  6. G.T. Rado, V.J. Folen, Phys. Rev. Lett. 7 (1961) 310 https://doi.org/10.1103/PhysRevLett.7.310
  7. J. van Suchtelen, Philips Res. Rep. 27 (1972) 28
  8. Y. Kikuchi, in: O.E. Mattai (Ed.), Magnetostrictive Matels and Piezomagnetic Ceramics as Transducer Materials in Ultrasonic Transducer Materials, vol. 1, Plenum Press, Newyork–London, 1971
  9. A.E. Gelyasin, V.M. Laletin, L.I. Trofimovich, Sov. Phys. Technol. Phys. 33 (1988) 1361
  10. T.G. Lupeiko, S.S. Lopatin, I.V. Lisnevskaya, B.I. Zvyagintsev, Inorg. Mater. 30 (1994) 1353
  11. J. Ryu, A.V. Carzo, K. Uchino, H.E. Kim, J. Electroceram. 7 (2001) 17 https://doi.org/10.1023/A:1012210609895
  12. J. Zhai, N. Cai, Z. Shi, Y. Lin, Ce-Wan. Nan, J. Phys. D: Appl. Phys. 37 (2004) 823 https://doi.org/10.1088/0022-3727/37/6/002
  13. Q.H. Jiang, Z.J. Shen, J.P. Zhou, Z. Shi, Ce-Wan. Nan, J. Eur. Ceram. Soc. 27 (2007) 279 https://doi.org/10.1016/j.jeurceramsoc.2006.02.041
  14. S.X. Dong, F.J. Li, D. Viehland, Appl. Phys. Lett. 83 (2003) 4812 https://doi.org/10.1063/1.1631756
  15. I. Bunget, V. Raetchi, Phys. State Solid 63 (1981) K55 https://doi.org/10.1002/pssa.2210630163
  16. S. Upadhyay, Devendrakumar, Omprakash, Bull. Mater. Sci. 19 (1996) 513 https://doi.org/10.1007/BF02744823
  17. C.G. Koops, Phys. Rev. B. 83 (1951) 121 https://doi.org/10.1103/PhysRev.83.121
  18. J.C. Maxwell, Electricity and Magnetism, Oxford University Press, London, 1954
  19. K.W. Wagner, Ann Physik 40 (1973) 817
  20. B. Parvetheeswara Rao, K.H. Rao, K. Trinadh, O.F. Calfun, J. Optoel. Adv. Mater. 6 (3) (2004) 951
  21. V.L. Mathe, k.K. Patanker, M.B. Kothale, S.B. Kulkarni, P.B. Joshi, S.A. patil, Pramana. J. Phys. 58 (5&6) (2002) 1105 https://doi.org/10.1007/s12043-002-0226-x
  22. N. Rezluscu, E. Rezluscu, Phys. State Solid (a) 23 (1974) 575 https://doi.org/10.1002/pssa.2210230229
  23. J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21 (1982) 1298 https://doi.org/10.1143/JJAP.21.1298
  24. L.E. Cross, Ferroelectrics 76 (1987) 241 https://doi.org/10.1080/00150198708016945
  25. M. Venkata Ramana, G. Sreenivasulu, N. Ramamanohar Reddy, K.V. Siva Kumar, B.S. Murty, V.R.K. Murthy, J. Phys. D: Appl. Phys. 40 (2007) 7565 https://doi.org/10.1088/0022-3727/40/23/049
  26. E.W. Gorter, Philips. Technol. Rev. 8 (1946) 353
  27. E.J.W. Verway, K.L.J. Helimann, J. Chem. Phys. 15 (1947) 174 https://doi.org/10.1063/1.1746464
  28. K. Srinivas, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, Mod. Phys. Lett. B 14 (2002) 663 https://doi.org/10.1142/S021798490000080X
  29. T.G. Lupeiko, I.B. Lopatin, I.V. Kozyrev, L.A. Derbaremdiker, Inorg. Mater. 28 (1992) 481
  30. A. Hanumain, T. Bhimasankaram, S.V. Suryanarayana, G. Prasad, Bull. Mater. Sci. 17 (1994) 405 https://doi.org/10.1007/BF02745228
  31. J. Ryu, A.V. Carzo, K. Uchino, H.E. Kim, Jpn. J. Appl. Phys. 40 (2001) 4948 https://doi.org/10.1143/JJAP.40.4948
  32. N. Cai, J. Zhai, C.W. Nan, Y. Lin, Z. Shi, Phys. Rev. B. 68 (2003) 224103 https://doi.org/10.1103/PhysRevB.68.224103
  33. X.M. Liu, S.Y. Fu, C.J. Huang, Mater. Sci. Eng. B 121 (2005) 255 https://doi.org/10.1016/j.mseb.2005.04.009

Cited by

  1. Nanocrystalline Pb(Zr0.52Ti0.48)O3 Ferroelectric Ceramics: Mechanical and Electrical Properties vol.2010, pp.None, 2010, https://doi.org/10.1155/2010/783043
  2. Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability vol.108, pp.7, 2009, https://doi.org/10.1063/1.3490782
  3. Magnetoelectric Properties in Nickel Ferrite - Niobate Relaxor Bulk Composites vol.77, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/ast.77.215
  4. Mechanical properties of Ni0.83Co0.15Cu0.02Fe1.9O4−δ+PbZr0.52Ti0.48O3 particulate composites by composite oscillator technique and the correlation with the results of magnetoelectric propertie vol.1, pp.4, 2009, https://doi.org/10.1007/s40145-012-0032-y
  5. Investigations on electrical and magnetic properties of multiferroic [(1−x)Pb(Fe0.5Nb0.5)O3−xNi0.65Zn0.35Fe2O vol.113, pp.14, 2013, https://doi.org/10.1063/1.4799414
  6. ME 소자의 저주파 등가회로 모델링 vol.26, pp.7, 2009, https://doi.org/10.4313/jkem.2013.26.7.515
  7. Influence of aluminium inclusions on dielectric properties of three-phase PZT-cement-aluminium composites vol.26, pp.2, 2009, https://doi.org/10.1680/adcr.12.00059
  8. Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities vol.4, pp.2, 2009, https://doi.org/10.1557/mrc.2014.13
  9. Characterization of Magnetic and Magnetoelectric Properties in Soft Ferrite-PFT-PT Bulk Composite vol.53, pp.3, 2009, https://doi.org/10.1007/s11106-014-9608-0
  10. Magneto-electric characterization of x (Na0.5K0.5)0.94Li0.06NbO3- (1-x) NiFe2O4 composite ceramics vol.35, pp.1, 2009, https://doi.org/10.1007/s10832-015-0003-0
  11. Magnetoelectric properties in bulk and layered composites vol.32, pp.3, 2009, https://doi.org/10.1108/mi-01-2015-0012
  12. Multifunctional magnetoelectric materials for device applications vol.27, pp.50, 2009, https://doi.org/10.1088/0953-8984/27/50/504002
  13. Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications vol.5, pp.1, 2009, https://doi.org/10.3390/act5010009
  14. Lattice strain induced multiferroicity in PZT-CFO particulate composite vol.123, pp.7, 2018, https://doi.org/10.1063/1.5008607
  15. A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters vol.51, pp.26, 2009, https://doi.org/10.1088/1361-6463/aac60b
  16. Structural, magnetic and ferroelectric properties of lead free piezoelectric 0.9(0.45Ba0.7Ca0.3TiO3-0.55BaTi0.8Zr0.2O3) and magnetostr vol.126, pp.22, 2019, https://doi.org/10.1063/1.5124159
  17. Crystal structure and improved dielectric, magnetic, ferroelectric and magneto-electric properties of xCoFe2O4−(1−x)BaTiO3 multiferroic composites vol.32, pp.10, 2009, https://doi.org/10.1007/s10854-021-05925-3