DOI QR코드

DOI QR Code

Laser Edge Isolation for High-efficiency Crystalline Silicon Solar Cells

  • Kyeong, Do-Hyeon (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Gunasekaran, Muniappan (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Kyung-Hae (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Hee-Jae (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kwon, Tae-Young (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Moon, In-Yong (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Young-Kuk (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Han, Kyu-Min (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Jun-Sin (School of Information and Communication Engineering & Department of Energy Science, Sungkyunkwan University)
  • Published : 20090700

Abstract

Edge isolation is an important step in industrial type solar cell processes. The $POCl_3$ emitter diffusion technique makes thin n-doped layers on all of the surfaces of the device, including the edges and the rear surface. The front and the back contacts are connected to this n-layer around the edge, which results in shunts. In this research, we used laser edge isolation to remove these shunts, thus obtaining results on the solar cell parameters. Usually, edge isolation is carried out at the end of the solar cell process; however, we altered the process steps so that the edge isolation was carried out before the $SiN_x$ deposition. This passivates the laser-induced damage. Various laser edge isolation conditions were studied by comparing the final solar cell efficiencies. From our results, we confirmed that laser edge isolation prior to $SiN_x$ deposition is good.

Keywords

Acknowledgement

We gratefully acknowledge financial support for this work from the National Research Laboratory under Grant No. NRL-ROA-2007-000-1002-0.

References

  1. A. D. Compaan, I. Matulionis and S. Nakade, Op. Las. Engin. 34, 15 (2000) https://doi.org/10.1016/S0143-8166(00)00061-0
  2. R. Hendel, Laser Technik J. 5, 32 (2008) https://doi.org/10.1002/latj.200790203
  3. O. Breitenstein, J. P. Rakotoniaina, M. H. Al Rifai and M. Werner, Prog. Photovolt: Res. Appl. 12, 529 (2004) https://doi.org/10.1002/pip.544
  4. M. Schulze and S. Venkat, Laser Technik J. 5, 38 (2008) https://doi.org/10.1002/latj.200890005
  5. I. M. Hamammu and K. Ibrahim, in Proceedings of International Conference on Semiconductor Electronics (Penang, Malaysia, 2002), p. 230
  6. R. H. Micheels and P. E. Valdivia, IEEE Trans. Electron Dev. 37, 353 (1990) https://doi.org/10.1109/16.46365
  7. M. D. Abbott, T. Trupke, H. P. Hartmann, R. Gupta and O. Breitenstein, Prog. Photovolt: Res. Appl. 15, 613 (2007) https://doi.org/10.1002/pip.766
  8. J. Arumughan, T. Pernau, A. Hauser and I. Melnyk, Solar Energy Mater. Solar Cells 87, 705 (2005) https://doi.org/10.1016/j.solmat.2004.06.018
  9. A. Kress, P. Fath, G. Willeke and E. Bucher, in Proceedings of Second World Conference and Exhibition on PVSEC (Vienna, 1998), p. 1547
  10. M. Wolf and H. Rauschenbach, Adv. Energy Conv. 3, 455 (1963) https://doi.org/10.1016/0365-1789(63)90063-8
  11. O. Breitenstein, M. Langenkamp, O. Lang and A. Schirrmacher, Solar Energy Mater. Solar Cells 65, 55 (2001) https://doi.org/10.1016/S0927-0248(00)00077-5
  12. T. J. McMahon, T. S. Basso and S. R. Rummel, in Proceedings of the 25th Photovoltaic Specialists Conference (Washington, DC, 1996), p. 1291