Piezoelectric Properties of PMS-PZT with $Bi_2O_3$ and $CeO_2$ for a Rosen-Type Transformer

Joo, H.K.;Kim, I.S.;Song, J.S.;Jeong, S.J.;Kim, M.S.;Jeon, S.H.

  • Published : 20090200

Abstract

Recently, piezoelectric transformers have been applied to many fields. Multi layer piezoelectric transformers have the advantage of high step up ratio, high electromechanical coupling coefficient ($K_p$) and high mechanical quality factor ($Q_m$), but they are subject to the peeling phenomenon and the need for an increased sintering temperature made the price of costly electrodes. Thus, in this study, we discuss a method to fabricate of high-power Rosen-type piezoelectric transformers. The high-power Rosen-type piezoelectric transformers were synthesized using 0.05Pb($Mn_{1/3}Sb_{2/3}$)$O_3$-$0.48PbZrO_3$-$0.47PbTiO_3$ (abbreviated as PMS-PZT) ceramics. The density, the microstructure and the dielectric and piezoelectric properties as functions of the sintering temperature were investigated and an addition of $Bi_2O_3$ and $CeO_2$ resulted in a significant improvement in the piezoelectric properties. The results indicated that the following optimal properties of ceramics were obtained at a sintering temperature of 1200 $^{\circ}C$: $\varepsilon_r$ = 880, $tan{\delta}$= 0.0075, $K_p$ = 0.57, $Q_m$ = 1124 and $d_{33}$ = 304 pC/N.

Keywords

References

  1. C. A. Rosen, Proc. Electron. 1, 205 (1957)
  2. J. H. Hu, H. L. Li, H. L. W. Chan and C. L. Choy, J. Sens Actuators A 88, 79 (2001) https://doi.org/10.1016/S0924-4247(00)00495-7
  3. J. Yoo, K. Yoon, S. Hwang, S. Suh, J. Kim and C. Yoo, J. Sens Actuators A 90, 132 (2001) https://doi.org/10.1016/S0924-4247(01)00454-X
  4. S. Y. Lee, H. J. Nam, Y. S. Kim, W. H. Jin and J. U. Bu, J. Korean Phys. Soc. 45, 227 (2004)
  5. B. H. Kim and J. H. An, J. Korean Phys. Soc. 44, 346 (2004)
  6. M. G. Kang, K. T. Kim, D. P. Kim and C. I. Kim, J. Korean Phys. Soc. 45, 227 (2004)
  7. H. M. Kim, J. S. Ahn, K. H. Lee and K. B. Lee, J. Korean Phys. Soc. 50, 1740 (2007) https://doi.org/10.3938/jkps.50.1740
  8. C. H. Kim,K. S. Song, H. B. Moon, J. Y. Son, B. G. Kim and J. H. Cho, J. Korean Phys. Soc. 51, 687 (2007) https://doi.org/10.3938/jkps.51.687
  9. Y.-J. Son, Y.-J. Kim, B.-H. Lee, S.-Y. Hwang, N.-K. Park, H.-Y. Chang, S.-K. Hong and S. J. Hong, J. Korean Phys. Soc. 51, 701 (2007) https://doi.org/10.3938/jkps.51.701
  10. D. Vasic, E. Sarraute, F. Costa, P. Sangouard and E. Cattan. J. Sens Actuators A 117, 317 (2005) https://doi.org/10.1016/j.sna.2004.06.009
  11. K. Kanayama and N. Maruko, Jpn. J. Appl. Phys. 36, 3048 (1997) https://doi.org/10.1143/JJAP.36.3048
  12. K. Ishii, N. Akimoto and S. Tashirio, Jpn. J. Appl. Phys. 37, 5330 (1998) https://doi.org/10.1143/JJAP.37.5330
  13. J. Hu, Y. Fuda, M. Katsuno and T. Yoshida, Jpn. J. Appl. Phys. 38, 3208 (1999) https://doi.org/10.1143/JJAP.38.3208
  14. K. Sakarai, K. Ohnishi and K. Tomikawa, Jpn. J. Appl. Phys. 38, 5592 (1999) https://doi.org/10.1143/JJAP.38.5592
  15. L. T. Li, Y. J. Yao and Z. H. Mu, J. Ferroelectrics, 28, 403(1980) https://doi.org/10.1080/00150198008227120
  16. Y. D. Hou, M. K. Zhu, B. Wang, H. Yan and C. S. Tian, J. Mat. Lett. 58, 1508 (2004) https://doi.org/10.1016/j.matlet.2003.10.013
  17. H. L. Du, Z. B. Pei, Z. M. Li, F. Luo, D. M. Zhu, W. C. Zhou and S. B. Qu, Trans. Met. Soc. 16, l65 (2006)
  18. Y. Gao and Y. H. Chen, J. Ryu, J. Appl. Phys. 40, 687 (2001) https://doi.org/10.1143/JJAP.40.687
  19. J. W. Long, H. Y. Chen and Z. Y. Meng, J. Mater. Sci. Eng B. 99, 445 (2003) https://doi.org/10.1016/S0921-5107(02)00455-5
  20. S. L. Swartz and T. R. Shrout, Mater. Res. Bull. 17, 1245 (1982) https://doi.org/10.1016/0025-5408(82)90159-3
  21. A. Ngamjarurojana, S. Ural, S. H. Park, S. Ananta, R. Yimnirun and K. Uchino, Ceram. Int. 272, 8842 (2004)
  22. L. T. Li, Y. J. Yao and Z. H. Mu, Ferroelectrics. 28, 403 (1980) https://doi.org/10.1080/00150198008227120