Superconducting Properties of a $MgB_2$ Bulk Formed by Using a $MgB_4$ + Mg Mixture

Tan, Kai Sin;Jun, Byung-Hyuk;Kim, Chan-Joong

  • Published : 20090400

Abstract

The superconducting properties of a $MgB_2$ bulk formed by using a $MgB_4$ + Mg mixture were studied. $MgB_4$ powder was synthesized at 1000 $^{\circ}C$ for 5 hours in owing Ar gas. The density of the $MgB_2$ bulk formed by using this method was higher than that of the conventional $MgB_2$ bulk formed by using a Mg + 2B mixture. However, lower $J_c$ values were observed, especially at low fields, due to the high amount of MgO and $MgB_4$ present, thus decreasing the effective cross-sectional area and the connectivity of the samples. Although an enhancement of $H_{c2}$(T) was observed, the result showed no significant improvement in the $H_{irr}$(T).

Keywords

References

  1. R. Fluekiger, H. L. Suo, N. Musolino, C. Beneduce, P. Toulemonde and P. Lezza, Physica C 385, 286 (2003) https://doi.org/10.1016/S0921-4534(02)02307-9
  2. H. Kumakura, A. Matsumoto, T. Nakane and H. Kitaguchi, Physica C 456, 196 (2007) https://doi.org/10.1016/j.physc.2006.12.017
  3. V. Braccini, D. Nardelli, R. Penco and G. Grasso, Phys- ica C 456, 209 (2007) https://doi.org/10.1016/j.physc.2007.01.030
  4. A. Yamamoto, J. Shimoyama, S. Ueda, Y. Katsura, S. Horii and K. Kishio, Supercond. Sci. Technol. 18, 116 (2005) https://doi.org/10.1088/0953-2048/18/1/019
  5. J. H. Kim, S. X. Dou, J. L. Wang, D. Q. Shi, X. Xu, M. S. A. Hossain, W. K. Yeoh, S. Choi and T. Kiyoshi, Supercond. Sci. Technol. 20, 448 (2007) https://doi.org/10.1088/0953-2048/20/5/007
  6. K. S. Tan, N. K. Kim, Y. J. Kim, B. H. Jun and C. J. Kim, Supercond. Sci. Technol. 21, 015015 (2008) https://doi.org/10.1088/0953-2048/21/01/015015
  7. A. V. Pan, S. Zhou, H. Liu and S. Dou, Supercond. Sci. Technol. 16, 639 (2003) https://doi.org/10.1088/0953-2048/16/5/317
  8. H. Fujii, K. Togano and H. Kumakura, Supercond. Sci. Technol. 15, 1571 (2002) https://doi.org/10.1088/0953-2048/15/11/315
  9. A. Kikuchi, Y. Yoshida, Y. Iijima, N. Banno, T. Takeuchi and K. Inoue, Supercond. Sci. Technol. 17, 781 (2004) https://doi.org/10.1088/0953-2048/17/6/008
  10. Y. Iijima, A. Kikuchi, Y. Yoshida, T. Takeuchi, N. Banno and K. Inoue, Physica C 407, 44 (2004) https://doi.org/10.1016/j.physc.2004.04.015
  11. R. Schmitt, J. Glaser, T. Wenzel, K. G. Nickel and H. J. Meyer, Physica C 436, 38 (2006) https://doi.org/10.1016/j.physc.2006.01.004
  12. S. Brutti, G. Balducci, G. Gigli, A. Ciccioli, P. Man- frinetti and A. Palenzona, J. Cryst. Growth 289, 578 (2006) https://doi.org/10.1016/j.jcrysgro.2005.12.105
  13. S. Brutti, A. Ciccioli, G. Balducci, G. Gigli, P. Man- frinetti and A. Palenzona, Appl. Phys. Lett. 80, 2892 (2002) https://doi.org/10.1063/1.1471382
  14. S. C. Yan, G. Yan, C. F. Liu, Y. F. Lu and L. Zhou, J. Am. Ceram. Soc. 90, 2184 (2007) https://doi.org/10.1111/j.1551-2916.2007.01664.x
  15. S. C. Yan, G. Yan, L. Zhou, Y. Jia, H. H. Wen and Y. F. Lu, Supercond. Sci. Technol. 20, 377 (2007) https://doi.org/10.1088/0953-2048/20/4/012
  16. S. C. Yan, G. Yan, Y. F. Lu and L. Zhou, Supercond. Sci. Technol. 20, 549 (2007) https://doi.org/10.1088/0953-2048/20/6/010
  17. J. M. Rowell, Supercond. Sci. Technol. 16, R17 (2003) https://doi.org/10.1088/0953-2048/16/6/201