DOI QR코드

DOI QR Code

Multiple hTAFII31-binding motifs in the intrinsically unfolded transcriptional activation domain of VP16

  • Published : 2009.07.31

Abstract

Transcriptional activation domain (TAD) in virion protein 16 (VP16) of herpes simplex virus does not have any globular structure, yet exhibits a potent transcriptional activity. In order to probe the structural basis for the transcriptional activity of VP16 TAD, we have used NMR spectroscopy to investigate its detailed structural features. Results show that an unbound VP16 TAD is not merely "unstructured" but contains four short motifs (residues 424-433, 442-446, 465-467 and 472-479) with transient structural order. Pre-structured motifs in other intrinsically unfolded proteins (IUPs) were shown to be critically involved in target protein binding. The 472-479 motif was previously shown to bind to $hTAF_{II}31$, whereas the $hTAF_{II}31$-binding ability of other motifs found in this study has not been addressed. The VP16 TAD represents another IUP whose pre-structured motifs mediate promiscuous binding to various target proteins.

Keywords

References

  1. Triezenberg, S. J. (1995) Structure and function of transcriptional activation domains. Curr. Opin. Genet. Dev. 5, 190-196 https://doi.org/10.1016/0959-437X(95)80007-7
  2. Tjian, R. and Maniatis, T. (1994) Transcriptional activation: a complex puzzle with few easy pieces. Cell 77, 5-8 https://doi.org/10.1016/0092-8674(94)90227-5
  3. Pugh, B. F. (1996) Mechanisms of transcription complex assembly. Curr. Opin. Cell. Biol. 8, 303-311 https://doi.org/10.1016/S0955-0674(96)80002-0
  4. Lee, H., Mok, K. H., Muhandiram, R., Park, K. H., Suk, J. E., Kim, D. H., Chang, J., Sung, Y. C., Choi, K. Y. and Han, K. H. (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426-29432 https://doi.org/10.1074/jbc.M003107200
  5. Sigler, P. B. (1988) Transcriptional activation. Acid blobs and negative noodles. Nature 333, 210-212 https://doi.org/10.1038/333210a0
  6. Hahn, S. (1993) Structure(?) and function of acidic transcription activators. Cell 72, 481-483 https://doi.org/10.1016/0092-8674(93)90064-W
  7. Cho, H. S., Liu, C. W., Damberger, F. F., Pelton, J. G., Nelson, H. C. and Wemmer, D. E. (1996) Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci. 5, 262-269
  8. Campbell, M. E., Palfreyman, J. W. and Preston, C. M. (1984) Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J. Mol. Biol. 180, 1-19 https://doi.org/10.1016/0022-2836(84)90427-3
  9. Sadowski, I., Ma, J., Triezenberg, S. and Ptashne, M. (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563-564 https://doi.org/10.1038/335563a0
  10. Regier, J. L., Shen, F. and Triezenberg, S. J. (1993) Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. U.S.A. 90, 883-887 https://doi.org/10.1073/pnas.90.3.883
  11. Sullivan, S. M., Horn, P. J., Olson, V. A., Koop, A. H., Niu, W., Ebright, R. H. and Triezenberg, S. J. (1998) Mutational analysis of a transcriptional activation region of the VP16 protein of herpes simplex virus. Nucleic. Acids. Res. 26, 4487-4496 https://doi.org/10.1093/nar/26.19.4487
  12. Shen, F., Triezenberg, S. J., Hensley, P., Porter, D. and Knutson, J. R. (1996) Transcriptional activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors. J. Biol. Chem. 271, 4827-4837 https://doi.org/10.1074/jbc.271.9.4827
  13. Kobayashi, N., Boyer, T. G. and Berk, A. J. (1995) A class of activation domains interacts directly with TFIIA and stimulates TFIIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15, 6465-6473
  14. Kobayashi, N., Horn, P. J., Sullivan, S. M., Triezenberg, S. J., Boyer, T. G. and Berk, A. J. (1998) DA-complex assembly activity required for VP16C transcriptional activation. Mol. Cell. Biol. 18, 4023-4031
  15. Hardy, S., Brand, M., Mittler, G., Yanagisawa, J., Kato, S., Meisterernst, M. and Tora, L. (2002) TATA-binding protein- free TAF-containing complex (TFTC) and p300 are both required for efficient transcriptional activation. J. Biol. Chem. 277, 32875-32882 https://doi.org/10.1074/jbc.M205860200
  16. Ikeda, K., Stuehler, T. and Meisterernst, M. (2002) The H1 and H2 regions of the activation domain of herpes simplex virion protein 16 stimulate transcription through distinct molecular mechanisms. Genes Cells 7, 49-58 https://doi.org/10.1046/j.1356-9597.2001.00492.x
  17. Kraus, W. L., Manning, E. T. and Kadonaga, J. T. (1999) Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol. Cell. Biol. 19, 8123-8135
  18. Kundu, T. K., Palhan, V. B., Wang, Z., An, W., Cole, P. A. and Roeder, R. G. (2000) Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol. Cell 6, 551-561 https://doi.org/10.1016/S1097-2765(00)00054-X
  19. Uesugi, M., Nyanguile, O., Lu, H., Levine, A. J. and Verdine, G. L. (1997) Induced alpha helix in the VP16 activation domain upon binding to a human TAF. Science 277, 1310-1313 https://doi.org/10.1126/science.277.5330.1310
  20. Klemm, R. D., Goodrich, J. A., Zhou, S. and Tjian, R. (1995) Molecular cloning and expression of the 32-kDa subunit of human TFIID reveals interactions with VP16 and TFIIB that mediate transcriptional activation. Proc. Natl. Acad. Sci. U.S.A. 92, 5788-5792 https://doi.org/10.1073/pnas.92.13.5788
  21. Burley, S. K. and Roeder, R. G. (1996) Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769-799 https://doi.org/10.1146/annurev.bi.65.070196.004005
  22. Choi, Y., Asada, S. and Uesugi, M. (2000) Divergent hTAFII31-binding motifs hidden in activation domains. J. Biol. Chem. 275, 15912-15916 https://doi.org/10.1074/jbc.275.21.15912
  23. Langlois, C., Mas, C., Di Lello, P., Jenkins, L. M., Legault, P. and Omichinski, J. G. (2008) NMR structure of the complex between the Tfb1 subunit of TFIIH and the activation domain of VP16: structural similarities between VP16 and p53. J. Am. Chem. Soc. 130, 10596-10604 https://doi.org/10.1021/ja800975h
  24. Jonker, H. R., Wechselberger, R. W., Boelens, R., Folkers, G. E. and Kaptein, R. (2005) Structural properties of the promiscuous VP16 activation domain. Biochemistry 44, 827-839 https://doi.org/10.1021/bi0482912
  25. Chi, S. W., Lee, S. H., Kim, D. H., Ahn, M. J., Kim, J. S., Woo, J. Y., Torizawa, T., Kainosho, M. and Han, K. H. (2005) Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795-38802 https://doi.org/10.1074/jbc.M508578200
  26. Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., Liao, J. C., Okorokov, A. L., Milner, J., Arrowsmith, C. H. and Bochkarev, A. (2005) Singlestranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc. Natl. Acad. Sci. U.S.A. 102, 15412-15417 https://doi.org/10.1073/pnas.0504614102
  27. Di Lello, P., Jenkins, L. M., Jones, T. N., Nguyen, B. D., Hara, T., Yamaguchi, H., Dikeakos, J. D., Appella, E., Legault, P. and Omichinski, J. G. (2006) Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22, 731-740 https://doi.org/10.1016/j.molcel.2006.05.007
  28. Lee, S. H., Park, K. H., Kim, D. H., Choung, D. H., Suk, J. E., Kim, D. H., Chang, J., Sung, Y. C., Choi, K. Y. and Han, K. H. (2001) Structural origin for the transcriptional activity of human p53. J. Biochem. Mol. Biol. 34, 73-79
  29. O'Hare, P. and Williams, G. (1992) Structural studies of the acidic transactivation domain of the Vmw65 protein of herpes simplex virus using 1H NMR. Biochemistry 31, 4150-4156 https://doi.org/10.1021/bi00131a035
  30. Chi, S. W., Kim, D. H., Lee, S. H., Chang, I. and Han, K. H. (2007) Pre-structured motifs in the natively unstructured preS1 surface antigen of hepatitis B virus. Protein Sci. 16, 2108-2117 https://doi.org/10.1110/ps.072983507
  31. Maeng, C. Y., Oh, M. S., Park, I. H. and Hong, H. J. (2001) Purification and structural analysis of the hepatitis B virus preS1 expressed from Escherichia coli. Biochem. Biophys. Res. Commun. 282, 787-792 https://doi.org/10.1006/bbrc.2001.4641
  32. Kim, D. H., Ni, Y., Lee, S. H., Urban, S. and Han, K. H. (2008) An anti-vial peptide derived from the preS1 surface protein of hepatitis B virus. BMB Rep. 41, 640-644 https://doi.org/10.5483/BMBRep.2008.41.9.640
  33. Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J. and Pavletich, N. P. (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953 https://doi.org/10.1126/science.274.5289.948
  34. Demarest, S. J., Martinez-Yamout, M., Chung, J. Chen, H., Xu, W., Dyson, H. J., Evans, R. M. and Wright, P. E. (2002) Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415, 549-553 https://doi.org/10.1038/415549a
  35. Sayers, E. W., Gerstner, R. B., Draper, D. E. and Torchia, D. A. (2000) Structural preordering in the N-terminal region of ribosomal protein S4 revealed by heteronuclear NMR spectroscopy. Biochemistry 39, 13602-13613 https://doi.org/10.1021/bi0013391
  36. Ramelot, T. A., Gentile, L. N. and Nicholson, L. K. (2000) Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725 https://doi.org/10.1021/bi992580m
  37. Zitzewitz, J. A., Ibarra-Molero, B., Fishel, D. R., Terry, K. L. and Matthews, C. R. (2000) Preformed secondary structure drives the association reaction of GCN4-p1, a model coiled-coil system. J. Mol. Biol. 296, 1105-1116 https://doi.org/10.1006/jmbi.2000.3507
  38. Bienkiewicz, E. A., Adkins, J. N. and Lumb, K. J. (2002) Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27 (Kip1). Biochemistry 41, 752-759 https://doi.org/10.1021/bi015763t
  39. Parker, D., Rivera, M., Zor, T., Henrion-Caude, A., Radhakrishnan, I., Kumar, A., Shapiro, L. H., Wright, P. E., Montminy, M. and Brindle, P. K. (1999) Role of secondary structure in discrimination between constitutive and inducible activators. Mol. Cell. Biol. 19, 5601-5607
  40. Daughdrill, G. W., Hanely, L. J. and Dahlquist, F. W. (1998) The C-terminal half of the anti-sigma factor FlgM contains a dynamic equilibrium solution structure favoring helical conformations. Biochemistry 37, 1076-1082 https://doi.org/10.1021/bi971952t
  41. Domanski, M., Hertzog, M., Coutant, J., Gutsche-Perelroizen, I., Bontems, F., Carlier, M. F., Guittet, E. and van Heijenoort, C. (2004) Coupling of folding and binding of thymosin beta4 upon interaction with monomeric actin monitored by nuclear magnetic resonance. J. Biol. Chem. 279, 23637-23645 https://doi.org/10.1074/jbc.M311413200
  42. Radhakrishnan, I., Perez-Alvarado, G. C., Parker, D., Dyson, H. J., Montminy, M. R. and Wright, P. E. (1997) Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91, 741-752 https://doi.org/10.1016/S0092-8674(00)80463-8
  43. Chang, J. F., Phillips, K., Lundback, T., Gstaiger, M., Ladbury, J. E. and Luisi, B. (1999) Oct-1 POU and octamer DNA co-operate to recognise the Bob-1 transcription co-activator via induced folding. J. Mol. Biol. 288, 941-952 https://doi.org/10.1006/jmbi.1999.2711
  44. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. and Rosen, M. K. (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404, 151-158 https://doi.org/10.1038/35004513
  45. Dames, S. A., Martinez-Yamout, M., De Guzman, R. N., Dyson, H. J. and Wright, P. E. (2002) Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc. Natl. Acad. Sci. U.S.A. 99, 5271-5276 https://doi.org/10.1073/pnas.082121399
  46. Dyson, H. J. and Wright, P. E. (2002) Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol. 12, 54-60 https://doi.org/10.1016/S0959-440X(02)00289-0
  47. Mucsi, Z., Hudecz, F., Hollosi, M., Tompa, P. and Friedrich, P. (2003) Binding-induced folding transitions in calpastatin subdomains A and C. Protein Sci. 12, 2327-2336 https://doi.org/10.1110/ps.03138803
  48. De Guzman, R. N., Martinez-Yamout, M. A., Dyson, H. J. and Wright, P. E. (2004) Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2: regulation by competition between intrinsically unstructured ligands for non-identical binding sites. J. Biol. Chem. 279, 3042-3049 https://doi.org/10.1074/jbc.M310348200
  49. Dyson, H. J. and Wright, P. E. (2005) Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell. Biol. 6, 197-208 https://doi.org/10.1038/nrm1589
  50. Sugase, K., Dyson, H. J. and Wright. P. E. (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447, 1021-1025 https://doi.org/10.1038/nature05858
  51. Radhakrishnan, I., Perez-Alvarado, G. C., Dyson, H. J. and Wright, P. E. (1998) Conformational preferences in the Ser133-phosphorylated and non phosphorylated forms of the kinase inducible transactivation domain of CREB. FEBS Lett. 430, 317-322 https://doi.org/10.1016/S0014-5793(98)00680-2
  52. Wishart, D. S. and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363-392 https://doi.org/10.1016/S0076-6879(94)39014-2

Cited by

  1. The alphabet of intrinsic disorder vol.1, pp.1, 2013, https://doi.org/10.4161/idp.24360
  2. Mitoxantrone Binds to Nopp140, an Intrinsically Unstructured Protein, and Modulate its Interaction with Protein Kinase CK2 vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.2005
  3. The Mechanism of p53 Rescue by SUSP4 vol.129, pp.5, 2017, https://doi.org/10.1002/ange.201607819
  4. Expanding the proteome: disordered and alternatively folded proteins vol.44, pp.04, 2011, https://doi.org/10.1017/S0033583511000060
  5. Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins vol.1840, pp.3, 2014, https://doi.org/10.1016/j.bbagen.2013.10.042
  6. Intrinsically disordered fold of a PIAS1-binding domain of CP2b vol.18, pp.1, 2014, https://doi.org/10.6564/JKMRS.2014.18.1.030
  7. Structure and VP16 binding of the Mediator Med25 activator interaction domain vol.18, pp.4, 2011, https://doi.org/10.1038/nsmb.1997
  8. A Small Ubiquitin-related Modifier-interacting Motif Functions as the Transcriptional Activation Domain of Krüppel-like Factor 4 vol.285, pp.36, 2010, https://doi.org/10.1074/jbc.M110.101717
  9. A novel TBP-TAF complex on RNA Polymerase II-transcribed snRNA genes vol.3, pp.2, 2012, https://doi.org/10.4161/trns.19783
  10. Transient-state Kinetic Analysis of Transcriptional Activator·DNA Complexes Interacting with a Key Coactivator vol.286, pp.18, 2011, https://doi.org/10.1074/jbc.M110.207589
  11. The Mechanism of p53 Rescue by SUSP4 vol.56, pp.5, 2017, https://doi.org/10.1002/anie.201607819
  12. Transient Secondary Structures as General Target-Binding Motifs in Intrinsically Disordered Proteins vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113614