DOI QR코드

DOI QR Code

Comparison of Corrosion Resistance between $Al_{2}O_{3}$and YSZ Coatings against High Temperature LiCl-$Li_{2}O$ Molten Salt

Lee, Ho-Young;Baik, Kyeong-Ho

  • Published : 20091000

Abstract

In this study, the high-temperature corrosion resistance of plasma-sprayed ceramic oxide coatings has been evaluated in a LiCl-$Li_{2}O$ molten salt under an oxidizing environment. $Al_{2}O_{3}$ and YSZ coatings were manufactured by atmospheric plasma spraying onto a Ni alloy substrate. Both the plasma-sprayed $Al_{2}O_{3}$ and YSZ coatings had a typical splat quenched microstructure which contained various types of defects, including incompletely filled pores, inter-splat pores and intra-splat microcracks. Corrosion resistance was evaluated by the thickness reduction of the coating as a function of the immersion time in the LiCl-$Li_{2}O$ molten salt at a temperature of 650 °C. A linear corrosion kinetic was found for the $Al_{2}O_{3}$ coating, while no thickness variation with time occurred for the YSZ coating. The ceramic oxide coatings were reacted with LiCl-$Li_{2}O$ molten salt to form a porous reaction layer of LiAl, $Li_{5}AIO_{4}$ and $Li_{5}AIO_{8}$ for the $Al_{2}O_{3}$ coating and a dense reaction layer of non-crystalline phase for the YSZ coating. The reaction products were also formed along the inside coating of the porous channel. The superior corrosion resistance of the YSZ coating was attributed to the formation of a dense protective oxide layer of non-crystalline reaction products on the surface and at the inter-splat pores of the coating.

Keywords

References

  1. D. R. Sadoway, J. Mater. Res. 10, 487 (1995) https://doi.org/10.1557/JMR.1995.0487
  2. S. M. Jeong, H. Y. Yoo, J. M. Hur, and C. S. Seo, J. Alloy. Compd. 452, 27 (2007) https://doi.org/10.1016/j.jallcom.2007.02.057
  3. J. E. Indacochea and J. L. Smith, J. Mater. Res. 14, 1990 (1999) https://doi.org/10.1557/JMR.1999.0268
  4. Y. Sakamura, M. Kurada, and T. Inoue, J. Electrochem. Soc. 153, D31, (2005) https://doi.org/10.1149/1.2160430
  5. C. S. Cho, S. B. Park, B. H. Park, K. J. Jung, S. W. Park, and S. H. Kim, J. Nucl. Sci. Tech. 43, 587 (2006) https://doi.org/10.3327/jnst.43.587
  6. S. H. Cho, I. J. Cho, G. S. You, J. S. Yoon, and S. W. Park, Met. Mater. Int. 13, 303 (2007) https://doi.org/10.1007/BF03027886
  7. S. H. Cho, J. S. Zhang, Y. J. Shin, S. W. Park, and H. S. Park, J. Nucl. Mater. 325, 13 (2004) https://doi.org/10.1016/j.jnucmat.2003.10.011
  8. J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell, and A. G. Raraz, Oxid. Met. 55, 1 (2001) https://doi.org/10.1023/A:1010333407304
  9. R. Y. Liu, X. Wang, J. S. Zhang, and X. M. Wang, J. Nucl. Mater. 327, 194 (2004) https://doi.org/10.1016/j.jnucmat.2004.02.006
  10. Q. Gao, R. Y. Liu, J. S. Zhang, and J. T. Guo, Mater. Lett. 59, 2052 (2005) https://doi.org/10.1016/j.matlet.2005.02.015
  11. S. Jiansirisomboon, K. J. D. MacKenzie, S. G. Roberts, and P. S. Grant, J. Euro. Ceram. Soc. 23, 196 (2003) https://doi.org/10.1016/S0955-2219(02)00207-8
  12. D. R. Clarke and C. G. Levi, Annual Rev. Mater. Res. 33, 383 (2003) https://doi.org/10.1146/annurev.matsci.33.011403.113718
  13. M. Fitsch, H. Klemm, M. Herrmann, and B. Schenk, J. Euro. Ceram. Soc. 26, 3557 (2006) https://doi.org/10.1016/j.jeurceramsoc.2006.01.015

Cited by

  1. Effects of Plasma-Sprayed La0.7Sr0.3MnO3 Coating on Thermally Grown Oxide Scale and Electrical Conductivity of Fe-Cr Interconnect for SOFCs vol.160, pp.6, 2009, https://doi.org/10.1149/2.061306jes
  2. Significant Reduction in Hydration Energy for Yttria Stabilized Zirconia Grain Boundaries and the Consequences for Proton Conduction vol.30, pp.34, 2009, https://doi.org/10.1021/la501860k
  3. Corrosion Behavior of Laser Melted Alumina-40 wt% Titania Coated High Density Graphite in Molten Salt vol.69, pp.9, 2009, https://doi.org/10.1007/s12666-015-0699-1
  4. 플라즈마 제트에서의 분말 용융특성에 따른 Y2O3 코팅층의 미세조직 형성거동 vol.26, pp.5, 2009, https://doi.org/10.3740/mrsk.2016.26.5.229
  5. Preparation of the plasma-sprayed graded thermal barrier coating by co-injection of premixed powders through a single plasma torch vol.34, pp.10, 2018, https://doi.org/10.1080/02670844.2017.1374634
  6. Failure of Multilayer Suspension Plasma Sprayed Thermal Barrier Coatings in the Presence of Na2SO4 and NaCl at 900 °C vol.28, pp.1, 2009, https://doi.org/10.1007/s11666-018-0780-5
  7. A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures vol.28, pp.4, 2009, https://doi.org/10.1007/s11666-019-00855-3
  8. Corrosion of stainless steel 316L in molten LiCl-Li2O-Li vol.517, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.02.007
  9. Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing vol.51, pp.7, 2019, https://doi.org/10.1016/j.net.2019.05.023
  10. Laser Surface Modification of Air Plasma-Sprayed Al2O3/YSZ Multilayer Thermal Barrier Coating to Improve Hot Corrosion Resistance in V2O5-Na2SO4 Salts vol.28, pp.8, 2009, https://doi.org/10.1007/s11666-019-00932-7
  11. Submicron-thick yttria-stabilized zirconia coating as an advanced tritium permeation barrier vol.61, pp.7, 2009, https://doi.org/10.1088/1741-4326/ac044d