Bioleaching of Pyrite from the Abandoned Hwasun Coal Mine Drainage using Indigenous Acidophilic Bacteria

화순 광산배수에 서식하는 토착 호산성 박테리아를 이용한 황철석의 용출 특성

Park, Cheon-Young;Cheong, Kyung-Hoon;Kim, Kae-Min;Hong, Young-Ui;Cho, Kang-Hee
박천영;정경훈;김계민;홍영의;조강희

  • Published : 20091000

Abstract

The rod-shaped indigenous bacteria from the abandoned Hwasun coal mine drainage were cultivated in an ATCC125 medium. SEM was used to identify the morphology of the indigenous acidophilic bacteria and the corroded pyrite surface. On the indigenous bacteria growing in ATCC solution, the initial pH value (3.89) of ATCC solution was gradually decreased growth time and 28 days after in the pH value of ATCC solution was 2.3. The growth curve of indigenous bacteria in ATCC solution can be divided into lag, exponential and death period. The lag period in ATCC solution was up to 15 days. The indigenous bacteria inoculated in ATCC solution with supplement of pyrite grains, and then numerous indigenous bacteria were attached to the pyrite surface at 101 days after inoculation. The regular patterns of hexagonal cavities and the straight line of fractures were originally formed in the pyrite surface, and the indigenous acidophilic bacteria were selectively attacked and extensively widen these structures. When the indigenous bacteria oxidized the pyrite, the extracellular polymeric substance (EPS) was formed and covered with pyrite grains. The formation of EPS was probably secreted by the indigenous bacteria, and the EPS contributed to the indigenous bacteria’s ability to adhere to the pyrite surface. After 111 days inoculation with pyrite, the content of Fe, Zn and Cu enriched 1.3, 1.4 and 2 times more in the bacterial sample than the control sample.

화순 폐탄광 배수에 서식하는 토착 호산성 박테리아를 ATCC125 배양액에 접종하여 배양한 결과 막대 모양의 호산성박테리아들이 배양되었다. SEM을 이용하여 토착박테리아의 특징과 부식되는 황철석 표면을 조사 하였다. 배양액의 초기 pH는 3.89이었으나 토착 호산성 박테리아들이 성장함에 따라 점점 감소하여 배양 28일에는 2.3으로 나타났다. 배양 시간에 따른 토착호산성 박테리아의 개체수는 대략적으로 적응기, 성장기 및 사멸기로 나타났으며, ATCC125 배양액에서 토착 호산성 박테리아의 적응기는 약 15일 이상으로 나타났다. 화순 토착 호산성 박테리아를 ATCC125에서 배양하여 황철석 입자가 들어 있는 ATCC 배양액에 접종한 결과 101일 만에 수많은 박테리아 개체수가 황철석 표면에 부착하였다. 규칙적인 육각형의 공동이나 직선상의 파쇄대가 원래 황철석 표면에 형성되어 있었으며, 토착 호산성 박테리아들이 이들 장소를 선택적으로 공격하여 확장시키는 것으로 나타났다. 토착 호산성 박테리아가 황철석 표면을 산화시킬 때 박테리아로부터 생성되는 EPS물질이 황철석 표면을 피복하는 것으로 나타났으며 EPS 물질이 토착 박테리아가 황철석 표면에 부착하는 것을 도와주는 것으로 나타났다. 토착 호산성 박테리아를 황철석에 111일 동안 접종시킨 결과 대조 시료에 비해 박테리아 시료에서 Fe, Zn 및 Cu 함량이 각각 1.3배, 1.4배, 2배로 높게 용출되었다.

Keywords

References

  1. 기민희, 차진명, 이인화, 1998, "Thiobacillus ferrooxidans 에 의한 FeSO4 산화에 관한 연구," 대한환경공학회지, Vol. 20, No. 6, pp. 851-861
  2. 박천영, 정연중, 이인화, 1997, "철 박테리아 Thiobacillus ferrooxidans에 의한 황철석의 산화작용에 관한 연구," 한국지구과학회지, Vol. 18, No. 4, pp. 321-331
  3. 오종기, 김영석, 임명훈, 김성규, 이화영, 한춘, 1999, "황철 석의 산화적 분해에 관한 연구," 한국자원공학회지, Vol. 36, No. 4, pp. 269-275
  4. 이동진, 조경숙, 안종관, 박경호, 손정수, 정헌생, 2003, "Thiobacillus ferrooxidans에 의한 황동석 정광의 침출반응," 한국지구시스템공학회지, Vol. 40, No. 2, pp. 89-96
  5. 이인화, 기민희, 김시욱, 2000, "Thiobacillus ferrooxidans [ATCC 19859]와 분리균주 Thiobacillus KY에 의한 생물 학적 침출에 따른 황철석 표면 특성변화," 한국생물공학회지, Vol. 15, No. 3, pp. 254-261
  6. 이인화, 박천영, 2001, "Thiobacillus ferrooxidans에 의한 pyrite의 생물학적 침출에 따른 기질표면 특성변화," 한국생물공학회지, Vol. 16, No. 3, pp. 295-301
  7. 임명훈, 김영석, 김성규, 이화영, 한춘, 오종기, 1999, "미생물에 의한 황철석의 분해에 관한 연구," 한국자원공학회지, Vol. 36,No. 6, pp. 389-396
  8. 홍영의, 김계민, 조상섭, 박천영, 2009, "화순 페 탄광의 산성광산배수와 철산화박테리아의 지구화학," 한국지구시스템공학회 춘계학술발표논문집, pp. 125-130
  9. Baker, B.J. and Bafield, J.F., 2003, "Microbial communities in acid mine drainage," FEMS Microbiology Ecology, Vol. 44, pp. 139-152 https://doi.org/10.1016/S0168-6496(03)00028-X
  10. Bennett, J.C. and Tributsch, H., 1978, "Bacterial leaching patterns on pyrite crystal surfaces," Journal of Bacteriology, Vol. 134, pp. 310-317
  11. Berry, V.K. and Murr, L.E., 1975, "Bacterial attachment to molybdenite: an electron microscope study," Metallurgical Transactions 6B, pp. 488-490 https://doi.org/10.1007/BF02913840
  12. Berry, V.K., and Murr, L.E., 1978, "Direct Observations of Bacteria and Quantitative Studies of their Catalytic Role in the Leaching of Low-grade, Copper-bearing Waste," Murr, L.E., Torma, A.E. and Brierley, A. (eds)., Merallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic press, New York, pp. 103-136
  13. Brierley, C.L. and Brierley, J.A., 1973, "A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring," Canadian Journal of Microbiology, Vol. 19, pp. 183-188 https://doi.org/10.1139/m73-028
  14. Brierley, J.A., 2003, "Response of microbial systems to thermal stress in heap-biooxidation pretreatment of refractory gold ores," Hydrometallurgy, Vol. 71, pp. 13-19 https://doi.org/10.1016/S0304-386X(03)00143-9
  15. Chapelle, F.H., 2001, "Ground-water microbiology and geochemistry," John Wiley & Sons, Inc., 477p
  16. Das, A. and Mishra, A. K., 1996, "Role of Thiobacillus ferrooxidans and sulfur(sulphide)-depenent ferric-ionreducing activity in the oxidation of sulphide minerals," Applied Microbiology and Biotechnology, Vol. 45, pp. pp. 377-382 https://doi.org/10.1007/s002530050699
  17. Dziurla, M.A., Achouak, W., Lam, B.T., Heulin, T. and Berthelin, J., 1998, "Enzyme-linked immunofiltration assay to estimate attachment of thiobacilli to pyrite," Applied Environmental Microbiology, Vol. 64, pp. 2937-2942
  18. Edwards, K.J., Hu, B., Hamers, R.J. and Banfield, J.F., 2001, "A new look at microbial leaching patterns on sulfide minerals," FEMS Microbiology Ecology, Vol. 34, pp. 197-206 https://doi.org/10.1111/j.1574-6941.2001.tb00770.x
  19. Edwards, K.J., Bond, P.L. and Banfield, J.F., 2000, "Characteristics of attachment and growth of Thiobacillus caldus on sulfide minerals: A chemotactic response to sulfur minerals?," Environmental Microbiology, Vol. 2, pp. 324-332 https://doi.org/10.1046/j.1462-2920.2000.00111.x
  20. Escobar, B., Huerta, G. and Rubio, J., 1997, "Short communication: influence of LPS on the attachment of Thiobacillus ferrooxidans to minerals," World Journal of Microbiology & Biotechnology, Vol. 13, pp. 593-594 https://doi.org/10.1023/A:1018585930229
  21. Fowler, T.A., Holmes, P.R. and Crundwell, F.K., 1999, “The mechanism of bacterial leaching of pyrite by Thiobacillus ferrooxidans," Applied and Environmental Microbiology, Vol. 65, pp. 2987-2993
  22. Gehrke, T., Telegdi, J., Thierry, D. and Sand, W., 1998, Importance of eztracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching, Applied and Environmental Microbiology, Vol. 64, pp. 2743-2747
  23. Harrison, A.P.Jr., 1984, "The acidophilic thiobacilli and other acidophilic bacteria that share their habit," Annual Review of Microbiology, Vol. 38, pp. 265-292 https://doi.org/10.1146/annurev.mi.38.100184.001405
  24. Johnson, D.B., 1998, "Biodiversity and ecology of acidophilic microogramisms," FEMS Microbiology Ecology, Vol. 27, pp. 307-317 https://doi.org/10.1111/j.1574-6941.1998.tb00547.x
  25. Keller, L., and Murr, L.E., 1982, "Acid-bacterial and ferric sulfate leaching of pyrite single crystals," Biotechnology and Bioengineering, Vol. 24, pp. 83-96 https://doi.org/10.1002/bit.260240108
  26. Kelly, D.P. and Wood, A.P., 2000, "Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen.nov.," International Journal of Systematic and Evolutionary Microbiology, Vol. 50, pp. 511-516 https://doi.org/10.1099/00207713-50-2-511
  27. Kinzler, K., Gehrke, T., Telegdi, J. and Sand, W., 2003, "Bioleaching - a result of interfacial processes caused by extracellular polymeric substances (EPS)," Hydrometallurgy, Vol. 71, pp. 83-88 https://doi.org/10.1016/S0304-386X(03)00176-2
  28. Leduc, L.G. and Ferroni, G.D., 1994, "The chemolithotrophic bacterium Thiobacillus ferrooxidans," FEMS Microbiology Reviews, Vol. 14, pp. 103-120 https://doi.org/10.1111/j.1574-6976.1994.tb00082.x
  29. Lundgren, D.G. and Silver, M., 1980, "Ore leaching by bacteria," Annual Review of Microbiology, Vol. 34, pp. 263-283 https://doi.org/10.1146/annurev.mi.34.100180.001403
  30. McGoran, C.J.M., Duncan, D.W., and Walden, C.C., 1969, "Growth of Thiobacillus ferrooxidans on various substrates," Canadian Journal of Microbiology, Vol. 15, pp. 135-137 https://doi.org/10.1139/m69-024
  31. Murr, L.E., and Berry, V.K., 1976, "Direct observations of selective attachment of bacteria on low-grade sulfide ores and other mineral surfaces," Hydrometallurgy, Vol. 2, pp. 11-24 https://doi.org/10.1016/0304-386X(76)90010-4
  32. Murthy, K.S.N., and Natrajan, K.A., 1992, "The role of surface attachment of Thiobacillus ferroxidans on the biooxidation of pyrite," Minerals Metallurgical Processing, Vol. 9, pp. 20-24
  33. Ohmura, N., Kitamura, K., and Saiki, H., 1993, "Selective adhesion of Thiobacillus ferrooxidans to pyrite," Applied Environmental Microbiology, Vol. 59, pp. 4044-4050
  34. Poliani, C. and Donati, E., 1999, "The role of exopolymers in the bioleaching of a non-ferrous metal sulphide," Journal of Industrial Microbiology & Biotechnology, Vol. 22, pp. 88-92 https://doi.org/10.1038/sj.jim.2900610
  35. Rodriguez-Leiva, M. and Tributsch, H., 1988, "Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite," Archives of Microbiology, v, 149, pp. 401-405 https://doi.org/10.1007/BF00425578
  36. Rojas-Chapana, J.A. and Tributsch, H., 2004, "Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite," FEMS Microbiology Ecology, Vol. 47, pp. 19-29 https://doi.org/10.1016/S0168-6496(03)00221-6
  37. Sabatini, D.D., Bensch, K. and Barrnett, R.J., 1963, "Cytochemistry and electron microscopy, the preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation," The Journal of Cell Biology, Vol. 17, pp. 19-58 https://doi.org/10.1083/jcb.17.1.19
  38. Sand, W., Gehrke, T., Hallmann, R. and Schippers, A., 1995, "Sulfur chemistry, biofilm, and the(in)direct attack mechanism-a critical eveluation of bacterial leaching," Applied Microbiology and Biotechnology, Vol. 43, pp. 961-966 https://doi.org/10.1007/BF00166909
  39. Sanhueza, A., Ferrer, I. J., Vargas, T., Amils, R. and Sanchez, C., 1999, "Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties," Hydrometallurgy, Vol. 51, pp. 115-129 https://doi.org/10.1016/S0304-386X(98)00079-6
  40. Santhiya, D., Subramanian, S., Natarajan, K. A., Rao, K. H. and Forssberg, K. S. E., 2001, "Bio-modulation of galena and sphalerite surfaces using Thiobacillus ferrooxidans," International Journal of Mineral Processing, Vol. 62, pp. 121-141 https://doi.org/10.1016/S0301-7516(00)00048-X
  41. Schippers, A., Hallmann, R., Wentzien, S. and Sand, W., 1995, "Microbial diversity in uranium mine waste heap', Applied and Environmental Microbiology," Vol. 61, pp. 2930-2935
  42. Shrihari, S., Kumar, R., Ghandi, K.S. and Natarajan, K.A., 1991, "Role of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans," Applied and Microbiology Biotechnology, Vol. 36, pp. 278-282 https://doi.org/10.1007/BF00164434
  43. Silverman, M.P., 1967, "Mechanism of bacteria pyrite oxidation," Journal of Bacteriology, Vol. 94, pp. 1046-1051
  44. Silverman, M.P. and Lundgren, D.G., 1959, "Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans, 1. an improved medium and a harvesting procedure for securing high cell yields," Journal of Bacteriology, Vol. 77, pp. 642-647 https://doi.org/10.1002/path.1700770237
  45. Southam, G., and Beveridge, T.J., 1992, "Enumeration of thiobacilli with pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil," Applied and Environment Microbiology, Vol. 58, pp. 1904-1912
  46. Southam, G. and Beveridge, T.J., 1993, "Examination of Lipopolysaccharide (O-andtigen) populations of Thiobacillus ferrooxidans from two mine tailings," Applied Environmental Microbiology, Vol. 59, pp. 1283-1288
  47. Southwood, M.J., and Southwood, A.J., 1986, "Mineralogical observations on the bacterial leaching of auriferous pyrite," In R.W. Lawrence, R.M.R. Branion, and H.E. Ebner (eds.), Fundamental and Applied Biohydrometallurgy, Elsevier, New York. pp. 98-113
  48. Torma, A.E. Ashman, P.R., Olson, T.M., and Bosecker, K., 1979, "Microbiological leaching of a chalcopyrite concentrate and recovery of copper by solvent extraction and electrowinning," Metallurgy, Vol. 33, pp. 479-484
  49. Torma, A.E., Walden, C.C., and Branion, R.M.R., 1970, "Microbiological leaching of a zinc sulfide concentrate," Biotechnology and Bioengineering, Vol. 12, pp. 501-517 https://doi.org/10.1002/bit.260120403
  50. Tributsch, H. and Rojas-Chapana, J., 2007, "Bacterial strategies for obtaining chemical energy by degrading sulfide minerals," In Rawlings, D.E. and Jonson, D. B. (eds), Biomining, Springer, pp. 262-280
  51. Tributsch, H., and Rojas-Chapana, J. A., 2000, "Metal sulfide semiconductor electrochemical mechanisma induced by bacterial activity," Electrochimica Acta, Vol. 45, pp. 4705-4716 https://doi.org/10.1016/S0013-4686(00)00623-X
  52. Tributsch, H., 2001, "Direct versus indirect bioleaching," Hydrometallurgy, Vol. 59, pp. 177-185 https://doi.org/10.1016/S0304-386X(00)00181-X
  53. Weiss, R.L., 1973, "Attachment of bacteria to sulphur in extreme environment," Journal General Microbiology, Vol. 77, pp. 501-507 https://doi.org/10.1099/00221287-77-2-501
  54. Widler A.M. and Seward T.M., 2002, "The adsorption of gold(1) hydrosulphide complexes by iron sulphide surfaces," Geochimica et Cosmochimica Acta, Vol. 66, pp. 383-402 https://doi.org/10.1016/S0016-7037(01)00791-8
  55. Yu, J. Y., McGenity, T. J. and Coleman, M. L., 2001, "Solution chemistry during the lag phase and exponential phase of pyrite oxidation by Thiobacillus ferrooxidans," Chemical Geology, Vol. 175, pp. 307-317 https://doi.org/10.1016/S0009-2541(00)00332-6