DOI QR코드

DOI QR Code

Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions

Gweon, Bo-Mi;Kim, D.B.;Moon, S.Y.;Choe, W.

  • Published : 20090500

Abstract

Bio-applications of plasma have been widely studied in recent years. However, considering the high interests, the inactivation mechanisms of micro-organisms by plasma have not been clearly explained. The goal of this study was to find the sterilization mechanisms and define the major sterilization factors with the atmospheric pressure radio-frequency helium glow discharge. For the sterilization target the Escherichia coli was used. To begin with the sterilization study, the plasma characteristics were investigated by means of electrical and optical diagnostics. Especially, the gas temperature was controlled under 50 $^{\circ}C$ by keeping the input power less than 70W to eliminate the thermal effects. Contribution of the UV irradiation from the plasma was studied and it turned out to be negligible. On the other hand, it was found that the sterilization was more effective up to 40% with only 0.15% oxygen addition to the helium supply gas. It indicates that the inactivation process was dominantly controlled by oxygen radicals, rather than heat or UV photons.

Keywords

References

  1. M. Moisan, J. Barbeau, M.C. Crevier, J. Pelletier, N. Philip, B. Saoudi, Pure Appl. Chem. 74 (2002) 349 https://doi.org/10.1351/pac200274030349
  2. S. Moreau, M. Moisan, M. Tabrizian, J. Barbeau, J. Pelletier, A. Ricard, L'H. Yahia, J. Appl. Phys. 88 (2000) 15
  3. F. Rossi, O. Kylian, M. Hasiwa, Plasma Process. Polym. 3 (2006) 431 https://doi.org/10.1002/ppap.200600011
  4. M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, L’H. Yahia, Int. J. Pharm. 226 (2001) 1 https://doi.org/10.1016/S0378-5173(97)00147-6
  5. H. Uhm, J.P. Lim, S.Z. Li, Appl. Phys. Lett. 90 (2007) 261501 https://doi.org/10.1063/1.2747177
  6. M.K. Boudam, M. Moisan, B. Saoudi, C. Popovici, N. Gherardi, F. Massines, J. Phys. D: Appl. Phys. 39 (2006) 3494 https://doi.org/10.1088/0022-3727/39/16/S07
  7. S.Y. Moon, W. Choe, B.K. Kang, Appl. Phys. Lett. 84 (2) (2004) 188-190 https://doi.org/10.1063/1.1639135
  8. D.B. Kim, J.K. Rhee, B. Gweon, S.Y. Moon, W. Choe, Appl. Phys. Lett. 91 (2007) 151502 https://doi.org/10.1063/1.2794774
  9. X. Deng, J. Shi, M.G. Kong, IEEE Trans. Plasma Sci. 34 (2006) 4
  10. N. Philip, B. Saoudi, M. Crevier, M. Moisan, J. Barbeau, J. Pelletier, IEEE Trans. Plasma Sci. 30 (2002) 1429 https://doi.org/10.1109/TPS.2002.804203
  11. http://eng.applasma.com
  12. S.Y. Moon, W. Choe, Spectrochim. Acta Part B 58 (2003) 249 https://doi.org/10.1016/S0584-8547(02)00259-8
  13. X. Jiang, J. Morgan, M.P. Doyle, J. Food Protect. 66 (2003) 1771

Cited by

  1. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet vol.11, pp.11, 2009, https://doi.org/10.1088/1367-2630/11/11/115024
  2. Gas plasmas and plasma modified materials in medicine vol.8, pp.2, 2009, https://doi.org/10.2478/v10136-009-0013-9
  3. Plasma agents in bio-decontamination by dc discharges in atmospheric air vol.43, pp.22, 2009, https://doi.org/10.1088/0022-3727/43/22/222001
  4. The interaction of an atmospheric pressure plasma jet using argon or argon plus hydrogen peroxide vapour addition with bacillus subtilis vol.19, pp.10, 2009, https://doi.org/10.1088/1674-1056/19/10/105203
  5. Capillary-tube-based oxygen/argon micro-plasma system for the inactivation of bacteria suspended in aqueous solution vol.87, pp.9, 2011, https://doi.org/10.3109/09553002.2011.577503
  6. 비열 플라즈마 처리를 이용한 polystyrene, 소시지 케이싱, 그리고 훈제연어에서의 식중독균 저해 vol.43, pp.4, 2011, https://doi.org/10.9721/kjfst.2011.43.4.513
  7. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets vol.28, pp.8, 2011, https://doi.org/10.1016/j.fm.2011.08.002
  8. Cold Plasma Decontamination of Foods vol.3, pp.None, 2012, https://doi.org/10.1146/annurev-food-022811-101132
  9. Assessment of the roles of various inactivation agents in an argon-based direct current atmospheric pressure cold plasma jet vol.111, pp.12, 2012, https://doi.org/10.1063/1.4730627
  10. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water vol.370, pp.1, 2009, https://doi.org/10.1088/1742-6596/370/1/012024
  11. Power supply instrumentation for pulsed dielectric barrier discharges vol.370, pp.1, 2012, https://doi.org/10.1088/1742-6596/370/1/012064
  12. Evaluation of a Dielectric Barrier Discharge Plasma System for Inactivating Pathogens on Cheese Slices vol.54, pp.3, 2009, https://doi.org/10.5187/jast.2012.54.3.191
  13. Effect of Atmospheric Pressure Plasma Jet on Inactivation of Listeria monocytogenes, Quality, and Genotoxicity of Cooked Egg White and Yolk vol.32, pp.5, 2012, https://doi.org/10.5851/kosfa.2012.32.5.561
  14. Plasma Depolymerization of Chitosan in the Presence of Hydrogen Peroxide vol.13, pp.12, 2009, https://doi.org/10.3390/ijms13067788
  15. Opinion on the use of plasma processes for treatment of foods* vol.57, pp.5, 2013, https://doi.org/10.1002/mnfr.201300039
  16. Gas Flow Effect on E. coli and B. subtilis Bacteria Inactivation in Water Using a Pulsed Dielectric Barrier Discharge vol.41, pp.1, 2009, https://doi.org/10.1109/tps.2012.2230343
  17. Tooth Whitening Effects by Atmospheric Pressure Cold Plasmas with Different Gases vol.52, pp.11, 2009, https://doi.org/10.7567/jjap.52.11nf02
  18. Inactivation ofEscherichia coliUsing the Atmospheric Pressure Plasma Jet of Ar gas vol.52, pp.r3, 2009, https://doi.org/10.7567/jjap.52.036201
  19. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma vol.8, pp.6, 2009, https://doi.org/10.1371/journal.pone.0066231
  20. Evaluation of the Treatment of Both Sides of Raw Chicken Breasts with an Atmospheric Pressure Plasma Jet for the Inactivation of Escherichia coli vol.11, pp.8, 2009, https://doi.org/10.1089/fpd.2013.1718
  21. Cold Plasma Rapid Decontamination of Food Contact Surfaces Contaminated with Salmonella Biofilms vol.79, pp.5, 2009, https://doi.org/10.1111/1750-3841.12379
  22. Formation and characterization of hydrophobic glass surface treated by atmospheric pressure He/CH4 plasma vol.115, pp.4, 2014, https://doi.org/10.1063/1.4863457
  23. Atomic Oxygen and Hydroxyl Radical Generation in Round Helium-Based Atmospheric-Pressure Plasma Jets by Various Electrode Arrangements and Its Application in Sterilizing Streptococcus mutans vol.42, pp.12, 2014, https://doi.org/10.1109/tps.2014.2345096
  24. Reactive oxygen species in plasma against E. coli cells survival rate vol.24, pp.8, 2015, https://doi.org/10.1088/1674-1056/24/8/085201
  25. Effects of H3O+, OH, vol.48, pp.30, 2015, https://doi.org/10.1088/0022-3727/48/30/305401
  26. Effects of a Nonthermal Atmospheric Pressure Plasma Jet on Human Gingival Fibroblasts for Biomedical Application vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/2876916
  27. Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium vol.35, pp.6, 2009, https://doi.org/10.3892/or.2016.4726
  28. Studying Treatment Effects on Dielectric Barrier Discharge Generated by using Superimposed Voltage Waveform Pulsed-power Supply on Escherichia coli vol.137, pp.6, 2009, https://doi.org/10.1541/ieejfms.137.328
  29. Plasma-Functionalized Solution: A Potent Antimicrobial Agent for Biomedical Applications from Antibacterial Therapeutics to Biomaterial Surface Engineering vol.9, pp.50, 2009, https://doi.org/10.1021/acsami.7b14276
  30. Inactivation of Salmonella Typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma vol.13, pp.5, 2009, https://doi.org/10.1371/journal.pone.0197773
  31. A Review on Non-thermal Atmospheric Plasma for Food Preservation: Mode of Action, Determinants of Effectiveness, and Applications vol.10, pp.None, 2009, https://doi.org/10.3389/fmicb.2019.00622
  32. Cold Atmospheric Pressure Nitrogen Plasma Jet for Enhancement Germination of Wheat Seeds vol.39, pp.4, 2009, https://doi.org/10.1007/s11090-019-09969-6
  33. Evaluation of the effectiveness of nonthermal plasma disinfection vol.41, pp.21, 2009, https://doi.org/10.1080/09593330.2019.1583289
  34. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products vol.20, pp.3, 2009, https://doi.org/10.1111/1541-4337.12740