Structural Phase Variation of InGaN Micro-Structures Grown by Using Mixed Source HVPE

Lee, C.H.;Hwang, S.L.;Jeon, H.S.;Hong, S.H.;Heo, I.H.;Han, Y.H.;Kim, E.J.;Kim, K.H.;Ha, H.;Ahn, H.S.;Yang, M.;Kim, S.W.;Cho, C.R.

  • Published : 20090300

Abstract

In this paper, we report structural changes in InGaN micro-structures grown by using mixed-source hydride vapor phase epitaxy (HVPE). Hexagonal nanorods, bunched with many submicron-sized legs and tetrapod-shaped InGaN micro-structures, are grown on r-plane sapphire, c-plane sapphire and Si (111) substrates. As the growth temperature is increased, the overall shape of the InGaN structures changes from clusters of some needle-like legs to bunch shapes of many legs with thicker and hexagonal edges. The grown InGaN structures were analyzed by using X-ray photoelectron spectroscopy (XPS) to characterize the InGaN ternary crystal alloy. The indium mole fractions of the InGaN structures grown at 650 $^{\circ}C$, 700 $^{\circ}C$ and 750 $^{\circ}C$ were 44 %, 37 % and 27 %, respectively.

Keywords

References

  1. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992) https://doi.org/10.1116/1.585897
  2. S. Nakamura and S. Fasol, The Blue Laser Diode (Springer, Berlin, 1997)
  3. N. Duxbury, U. Bangert, P. Dawson, E. J. Thrush, W. V. D. Stricht, K. Jacobs and I. Moerman, Appl. Phys. Lett. 76, 1600 (2000) https://doi.org/10.1063/1.126108
  4. A. F. Wright and J. S. Nelson, Appl. Phys. Lett. 66, 3051 (1995) https://doi.org/10.1063/1.114274
  5. M. D. McCluskey, C. G. Van de Walle, C. P. Master, L. T. Romano and N. M. Johnson, Appl. Phys. Lett. 72, 2725 (1998) https://doi.org/10.1063/1.121072
  6. K. S. Park, J. S. Lee, M. Y. Sung and S. S. Kim, Jpn. J. Appl. Phys. 41, 7317 (2002) https://doi.org/10.1143/JJAP.41.7317
  7. S. Y. Kwon, H. J. Kim, H. Na, Y. W. Kim, H. C. Seo, H. J. Kim, Y. Shin, E. Yoon, Y. Sun, Y. H. Cho, J. W. Yoon and H. M. Cheong, J. Korean Phys. Soc. 46, 130 (2005) https://doi.org/10.3938/jkps.46.130
  8. C. K. Kim, S. W. Lee, H. J. Lee and M. W. Cho, J. Korean Phys. Soc. 48, 1321 (2006) https://doi.org/10.3938/jkps.48.1321
  9. H. M. Kim, H. S. Lee, S. I. Kim, S. R. Ryu, T. W. Kang and K. S. Chung, Phys. Stat. Sol. (b) 241, 2802 (2004) https://doi.org/10.1002/pssb.200405043
  10. V. Srivastava, V. Sureshkumar, P. Puviarasu, K. Thangaraju, R. Thangavel and J. Kumar, J. Crystal Growth 275, 2367(2005) https://doi.org/10.1016/j.jcrysgro.2004.11.338
  11. B. S. Simpkins, L. M. Ericson, R. M. Stroud, K. A. Pet-tigrew and P. E. Pehrsson, J. Crystal Growth 290, 115 (2006) https://doi.org/10.1016/j.jcrysgro.2005.12.095
  12. B. S. Xu, L. Y. Zhai, J. Liang, S. F. Ma, H. S. Jia and X. G. Liu, J. Crystal Growth 291, 34 (2006) https://doi.org/10.1016/j.jcrysgro.2006.02.046
  13. S. Kim, T. W. Kwon, J. Y. Kim, H. Shin and J. G. Lee, J. Korean Phys. Soc. 49, S741 (2006) https://doi.org/10.3938/jkps.49.741
  14. W. I. Park, J. Yoo and G. C. Yi, J. Korean Phys. Soc. 46, L1067 (2005) https://doi.org/10.3938/jkps.46.1067
  15. S. S. Kim, H. J. Lim, H. Cheong, W. I. Park and G. C. Yi, J. Korean Phys. Soc. 46, S214 (2005) https://doi.org/10.3938/jkps.46.214
  16. J. Y. Kim, H. W. Shim, E. K. Suh, T. Y. Kim, S. H. Lee, Y. H. Mo and K. S. Nahm, J. Korean Phys. Soc. 44, 137 (2004) https://doi.org/10.3938/jkps.44.137
  17. B. Shin, S. Lee, H. Choe, T. Oh, J. W. Jean, Y. Sohn and C. Kim, J. Korean Phys. Soc. 51, S212 (2007) https://doi.org/10.3938/jkps.51.212
  18. N. T. T. Hien, N. X. Dai and N. N. Long, J. Korean Phys. Soc. 52, 1637 (2008) https://doi.org/10.3938/jkps.52.1637
  19. J. Liu, S. Lee, Y. H. Ahn, J. Y. Park, Y. S. Kim and K. H. Koh, J. Korean Phys. Soc. 53, 141 (2008) https://doi.org/10.3938/jkps.53.141
  20. H. S. Ahn, K. H. Kim, M. Yang, J. Y. Yi, H. J. Lee, C. R. Cho, H. K. Cho, S. W. Kim, T. Narita, Y. Honda, M. Yamaguchi and N. Sawaki, Appl. Surf. Sci. 243, 178 (2005) https://doi.org/10.1016/j.apsusc.2004.09.117