DOI QR코드

DOI QR Code

Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination

Jung, Min-Jung;Kim, Ju-Wan;Im, Ji-Sun;Park, Soo-Jin;Lee, Young-Seak

  • Published : 20090000

Abstract

In this study, activated carbon fibers (ACFs) were surface modified with fluorine and mixed oxygen and fluorine gas to investigate the relationship between changes in surface properties by nitrogen and hydrogen adsorption capacity. The changes in surface properties of modified activated carbon fibers were investigated using X-ray photoelectron spectroscopy (XPS) and compared before and after surface treatment. The specific surface area and pore structures were characterized by the nitrogen adsorption isotherm at liquid nitrogen temperature. Hydrogen adsorption isotherms were obtained at 77 K and 1 bar by a volumetric method. The hydrogen adsorption capacity of fluorinated activated carbon fibers was the smallest of all samples. However, the bulk density in this sample was largest. This result could be explained by virial coefficients. The interaction of hydrogen-surface carbon increased with fluorination as the first virial coefficient. Also, the best fit adsorption model was found to explain the adsorption mechanism using a nonlinear curve fit. According to the goodness-of-fit, the Langmuir–.Freundlich isotherm model was in good agreement with experimental data from this study.

Keywords

References

  1. A.B. Fuertes, G. Marban, D.M. Nevskaia, Carbon 41 (2003) 87 https://doi.org/10.1016/S0008-6223(02)00274-9
  2. Z.H. Huang, F.Y. Kang, Y.P. Zheng, J.B. Young, K.M. Liang, Carbon 40 (2002) 1363 https://doi.org/10.1016/S0008-6223(01)00292-5
  3. Y.G. Ko, U.S. Chio, J.S. Kim, Y.S. Park, Carbon 40 (2000) 2661 https://doi.org/10.1016/S0008-6223(02)00168-9
  4. C.M. Yang, K. Kaneko, J. Colloid Interface Sci. 246 (2002) 34 https://doi.org/10.1006/jcis.2001.8012
  5. W. Shen, Q. Gue, Y. Zhang, Y. Lin, J. Zheng, J. Cheng, J. Fan, Colloid Surf. A 273 (2006) 147 https://doi.org/10.1016/j.colsurfa.2005.08.010
  6. M. Soleimani, T. Kaghazchi, J. Ind. Eng. Chem. 14 (2008) 28 https://doi.org/10.1016/j.jiec.2007.06.003
  7. X.B. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, J. Phys. Chem. B 109 (2005) 8880 https://doi.org/10.1021/jp050080z
  8. A. Celzard, A. Perrin, A. Albiniak, E. Broniek, J.F. Mareche, Fuel 86 (2007) 287 https://doi.org/10.1016/j.fuel.2006.05.033
  9. (a) P. Chingombe, B. Saha, R.J. Wakeman, Carbon 43 (2005) 3132; (b) K.C. Roh, J.B. Park, C.T. Lee, C.W. Park, J. Ind. Eng. Chem. 14 (2008) 247 https://doi.org/10.1016/j.carbon.2005.06.021
  10. (a) P. Chingombe, B. Saha, R.J. Wakeman, Carbon 43 (2005) 3132; (b) K.C. Roh, J.B. Park, C.T. Lee, C.W. Park, J. Ind. Eng. Chem. 14 (2008) 247 https://doi.org/10.1016/j.jiec.2007.08.012
  11. H. Touhara, F. Okino, Carbon 38 (2000) 241 https://doi.org/10.1016/S0008-6223(99)00140-2
  12. Y.S. Lee, J. Fluorine Chem. 128 (2007) 392 https://doi.org/10.1016/j.jfluchem.2006.11.014
  13. A. Tressaud, E. Durand, C. Labrugere, J. Fluorine Chem. 125 (2004) 1639 https://doi.org/10.1016/j.jfluchem.2004.09.022
  14. Y.S. Lee, B.K. Lee, Carbon 40 (2002) 2461 https://doi.org/10.1016/S0008-6223(02)00152-5
  15. Y.S. Lee, Y.H. Kim, J.S. Hong, J.K. Suh, G.J. Cho, Catal. Today 120 (2007) 420 https://doi.org/10.1016/j.cattod.2006.09.014
  16. S.M. Yun, J.W. Kim, M.J. Jung, Y.C. Nho, P.H. Kang, Y.S. Lee, Carbon Lett. 8 (2007) 292 https://doi.org/10.5714/CL.2007.8.4.292
  17. Y. Hattori, H. Tanaka, F. Okino, H. Touhara, Y. Nahahigashi, S. Utsumi, H. Kanoh, K. Kaneko, J. Phys. Chem. B 110 (2006) 9764 https://doi.org/10.1021/jp0618025
  18. S.J. Park, B.J. Kim, J. Colloid Interface Sci. 291 (2005) 597 https://doi.org/10.1016/j.jcis.2005.05.012
  19. S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, second ed., Academy Press, London, 1982, pp. 195–207
  20. C.A. Basar, J. Hazard. Mater. 135 (2006) 232 https://doi.org/10.1016/j.jhazmat.2005.11.055
  21. S.M. Lee, S.H. Park, S.C. Lee, H.J. Kim, Chem. Phys. Lett. 432 (2006) 518 https://doi.org/10.1016/j.cplett.2006.10.115
  22. S.D. Manjare, A.K. Ghoshal, Sep. Purif. Technol. 51 (2006) 118 https://doi.org/10.1016/j.seppur.2006.01.004
  23. Y. Liu, Colloid Surf. A 274 (2006) 34 https://doi.org/10.1016/j.colsurfa.2005.08.029

Cited by

  1. The development of a fully integrated micro-channel fuel processor using low temperature co-fired ceramic (LTCC) vol.15, pp.5, 2009, https://doi.org/10.1016/j.jiec.2009.09.031
  2. Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference vol.364, pp.1, 2009, https://doi.org/10.1016/j.colsurfa.2010.05.015
  3. Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification vol.48, pp.9, 2009, https://doi.org/10.1016/j.carbon.2010.03.045
  4. pH and electro-responsive release behavior of MWCNT/PVA/PAAc composite microcapsules vol.368, pp.1, 2009, https://doi.org/10.1016/j.colsurfa.2010.07.010
  5. Fabrication of ACF/CNT Composites by CVD Method vol.150, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.150-151.452
  6. Effects of porous carbon additives and induced fluorine on low dielectric constant polyimide synthesized with an e-beam vol.45, pp.11, 2009, https://doi.org/10.1016/j.materresbull.2010.07.005
  7. Sustained release behavior of pH‐responsive poly(vinyl alcohol)/poly(acrylic acid) hydrogels containing activated carbon fibers vol.120, pp.2, 2009, https://doi.org/10.1002/app.33242
  8. Effect of thermal fluorination on the hydrogen storage capacity of multi-walled carbon nanotubes vol.36, pp.2, 2009, https://doi.org/10.1016/j.ijhydene.2010.10.024
  9. Improved anti-oxidation properties of electrospun polyurethane nanofibers achieved by oxyfluorinated multi-walled carbon nanotubes and aluminum hydroxide vol.126, pp.3, 2009, https://doi.org/10.1016/j.matchemphys.2010.12.061
  10. Mechanism of heterogeneous adsorption in the storage of hydrogen in carbon fibers activated with supercritical water and steam vol.36, pp.13, 2009, https://doi.org/10.1016/j.ijhydene.2011.03.079
  11. The hydrogen storage capacity of metal-containing polyacrylonitrile-based electrospun carbon nanofibers vol.12, pp.3, 2009, https://doi.org/10.5714/cl.2011.12.3.171
  12. Surface modification of electrospun spherical activated carbon for a high-performance biosensor electrode vol.158, pp.1, 2009, https://doi.org/10.1016/j.snb.2011.05.058
  13. Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors vol.132, pp.12, 2009, https://doi.org/10.1016/j.jfluchem.2011.06.046
  14. Effects of fluorination on carbon molecular sieves for CH4/CO2 gas separation behavior vol.10, pp.None, 2012, https://doi.org/10.1016/j.ijggc.2012.06.013
  15. KOH 활성화 효과에 의한 흑연나노섬유의 전기화학적 거동 vol.36, pp.3, 2012, https://doi.org/10.7317/pk.2012.36.3.321
  16. Improvement of Superhydrophobicity of Multi-Walled Carbon Nanotubes Produced by Fluorination vol.13, pp.3, 2009, https://doi.org/10.5714/cl.2012.13.3.178
  17. Characterization of Activated Carbon Fiber by Microwave Heating and the Adsorption of Tetracycline Antibiotics vol.48, pp.9, 2013, https://doi.org/10.1080/01496395.2012.732978
  18. Water Vapor Adsorption Capacity of Thermally Fluorinated Carbon Molecular Sieves for CO2Capture vol.2013, pp.None, 2009, https://doi.org/10.1155/2013/705107
  19. Superhydrophobic carbon-based materials: a review of synthesis, structure, and applications vol.15, pp.2, 2009, https://doi.org/10.5714/cl.2014.15.2.089
  20. Overlook of carbonaceous adsorbents and processing methods for elemental mercury removal vol.15, pp.4, 2009, https://doi.org/10.5714/cl.2014.15.4.238
  21. 활성탄소의 불소화가 크롬이온 흡착에 미치는 영향 vol.26, pp.1, 2015, https://doi.org/10.14478/ace.2014.1126
  22. Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels vol.16, pp.2, 2009, https://doi.org/10.5714/cl.2015.16.2.127
  23. 함산소불화 활성탄소섬유를 이용한 저농도 크롬이온의 흡착 특성 vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1050
  24. Effect of nickel on hydrogen storage behaviors of carbon aerogel hybrid vol.16, pp.4, 2009, https://doi.org/10.5714/cl.2015.16.4.281
  25. Optimization of Kinetic Pore Size for Methane Storage Behavior of Pitch‐based Activated Carbon Fibers vol.37, pp.6, 2009, https://doi.org/10.1002/bkcs.10779
  26. Effects of (Oxy-)Fluorination on Various High-Performance Yarns vol.21, pp.9, 2009, https://doi.org/10.3390/molecules21091127
  27. 전기방사법에 의해 제조된 폴리우레탄 나노섬유의 수산화알루미늄 내첨에 의한 내염화 특성 향상 vol.30, pp.6, 2009, https://doi.org/10.7731/kifse.2016.30.6.009
  28. Modification of Polyethylene by RF Plasma in Different/Mixture Gases vol.9, pp.2, 2019, https://doi.org/10.3390/coatings9020145
  29. Electrophilic Fluorination of Graphitic Carbon for Enhancement in Electric Double‐Layer Capacitance vol.7, pp.11, 2009, https://doi.org/10.1002/ente.201900667
  30. Deoxofluorination of graphite oxide with sulfur tetrafluoride vol.49, pp.1, 2009, https://doi.org/10.1039/c9dt03782a
  31. Efficient removal of formaldehyde with ZIF-8 growth on TiO2-coated activated carbon fiber felts prepared via atomic layer deposition vol.55, pp.8, 2009, https://doi.org/10.1007/s10853-019-04142-y
  32. 플라즈마 및 직접 기상 불소화에 따른 활성탄소섬유의 초산가스 흡착 특성 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1098
  33. Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB vol.42, pp.24, 2021, https://doi.org/10.1080/09593330.2020.1743367