DOI QR코드

DOI QR Code

Circular deformation as a means of simultaneously evaluating the compressive and tensile strain in vulcanized rubber

Choi, Sung-Seen;Jang, Joong-Hee;Lee, Seong-Beom;Jang, Wang-Jin;Oh, Jeong-Seok;Lee, Seong-Hoon

  • Published : 20090000

Abstract

The recovery behavior of vulcanized rubber composed of a chloroprene rubber (CR) and natural rubber (NR) blend was investigated using a circular deformation technique. A linear sample of vulcanized rubber was circularly deformed and thermally aged. The tensile and compressive strains, and stress distributions, in the circularly deformed state were evaluated using finite element analysis (FEA). The stress and strain varied uniformly across the thickness of the sample, and the degree of recovery increased with the measurement time after the removal of deformation and decreased by increasing the thermal aging time. Instantaneous recoveries were obtained by extrapolation of the degree of recovery as a function of aging time. The crosslink density in the compressed interior of the sample was greater than that of the elongated exterior component.

Keywords

References

  1. S.-S. Choi, Bull. Kor. Chem. Soc. 21 (2000) 628
  2. S.-S. Choi, Kor. Polym. J. 7 (1999) 108
  3. S.-S. Choi, J. Appl. Polym. Sci. 75 (2000) 1378 https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1378::AID-APP9>3.0.CO;2-I
  4. S.-S. Choi, Polym. Int. 50 (2001) 107 https://doi.org/10.1002/1097-0126(200101)50:1<107::AID-PI593>3.0.CO;2-Z
  5. S.-S. Choi, D.-H. Han, S.-W. Ko, H.S. Lee, Bull. Kor. Chem. Soc. 26 (2005) 1853 https://doi.org/10.5012/bkcs.2005.26.11.1853
  6. S.-S. Choi, S.-H. Ha, C.-S. Woo, Bull. Kor. Chem. Soc. 27 (2006) 429 https://doi.org/10.5012/bkcs.2006.27.3.429
  7. C.H. Chen, J.L. Koenig, J.R. Shelton, E.A. Collins, Rubber Chem. Technol. 54 (1981) 734 https://doi.org/10.5254/1.3535831
  8. S.-S. Choi, Kor. Polym. J. 5 (1997) 39
  9. R.W. Layer, Rubber Chem. Technol. 65 (1992) 211 https://doi.org/10.5254/1.3538601
  10. B. Erman, J.E. Mark, Annu. Rev. Phys. Chem. 40 (1989) 351 https://doi.org/10.1146/annurev.pc.40.100189.002031
  11. J. Moczo, B. Pukanszky, J. Ind. Eng. Chem. 14 (2008) 535 https://doi.org/10.1016/j.jiec.2008.06.011
  12. S.-S. Choi, H.-M. Lee, J.-E. Ko, M.-C. Kim, J. Ind. Eng. Chem. 13 (2007) 1169
  13. C. Fulin, C. Lan, L. Caihong, Polym. Compd. 28 (2007) 667 https://doi.org/10.1002/pc.20328
  14. P. Sae-oui, C. Sirisinha, T. Wantana, K. Hatthapanit, J. Appl. Polym. Sci. 104 (2007) 3478 https://doi.org/10.1002/app.26139
  15. M.T. Ramesan, R. Alex, N.V. Khanh, React. Funct. Polym. 62 (2005) 41 https://doi.org/10.1016/j.reactfunctpolym.2004.08.002
  16. A.P. Kuriakose, M. Varghese, J. Appl. Polym. Sci. 90 (2003) 4084 https://doi.org/10.1002/app.13146
  17. S.-S. Choi, J. Appl. Polym. Sci. 83 (2002) 2609 https://doi.org/10.1002/app.10201
  18. H. Ismail, H.C. Leong, Polym. Test. 20 (2001) 509 https://doi.org/10.1016/S0142-9418(00)00067-2
  19. N.J. Morrison, M. Porter, Rubber Chem. Technol. 57 (1984) 63 https://doi.org/10.5254/1.3536002
  20. S.-S. Choi, Polym. Test. 21 (2002) 741 https://doi.org/10.1016/S0142-9418(02)00003-X
  21. S.-S. Choi, Kor. Polym. J. 7 (1999) 317

Cited by

  1. Dynamic Compressive Properties of Vulcanized Rubber Material from a Split Hopkinson Pressure Bar Experiment in Rubber Manufacturing vol.583, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.583.318
  2. Influence of Aging Media and Filler System on Recovery Behaviors of Natural Rubber Composites vol.47, pp.2, 2009, https://doi.org/10.7473/ec.2012.47.2.156
  3. Recovery Behaviors of Natural Rubber Composites Thermally Aged in Altering Medium Systems of Air and Water vol.48, pp.3, 2009, https://doi.org/10.7473/ec.2013.48.3.181
  4. Mechanical Response of Ping-Pong Racket to Different Hyperelastic Surface Materials vol.941, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.941-944.1566