The High-Voltage Electron Microscopy in Biomedical Research

고압전자현미경의 의.생물학 연구 분야에서의 활용

Kim, Hyun-Wook;Kim, Jee-Woong;Rhyu, Im-Joo
김현욱;김지웅;유임주

  • Published : 20090600

Abstract

Transmission electron microscopy (TEM) provides high resolution images, which are useful in studying ultrastructure of cells and tissues. We have to use very thin section about 60$\sim$100 nm thickness due to poor penetration power of the conventional TEM at 100 kV. To overcome this limitation, TEMs using higher accelerating voltage have been developed. TEMs can be categorized into conventional TEM, intermediate TEM, high voltage TEM (HVEM), and ultrahigh voltage TEM according to their accelerating voltage. HVEM using 500$\sim$1,000 kV has an enough penetration power to observe thick specimen up to 3$\sim$4 $\mu$m, which is useful understanding 3 dimensional configuration of the cell and tissue. HVEM was built up in Korea Basic Science Institute (KBSI, Daejeon, Korea) at 2004, maximum accelerating voltage is 1.3 MV in Korea. Many results showed up to the present various fields of science such as medical science, biology, agriculture and so on. Here, we briefly summarize recent biomedical applications of HVEM to provide an insight of HVEM for morphologist.

전자현미경(Electron Microscopy)은 우수한 해상력을 제공하여, 조직이나 세포의 미세구조 연구에 다양하게 이용되나, 전자빔 투과력의 한계로 100 nm 전후의 매우 얇은 조직만을 관찰할 수 있는 제한점을 갖는다. 따라서, 좀 더 두꺼운 조직을 관찰하기 위해서 높은 가속전압을 이용하는 현미경이 개발되었다. 전자현미경의 투과력은 사용하는 가속전압에 의해 증가되며, 전압의 크기에 따라 전자현미경(Conventional Electron Microscopy), 중전압현미경(Intermediate Voltage Electron Microscopy), 고압전자현미경(High Voltage Electron Microscopy: HVEM) 및 초고압전자현미경(Ultra High Voltage Electron Microscopy)의 네 가지로 구분된다. 이중 고압전자현미경은 500~1,000 kV의 높은 가속전압에 의해 증가된 투과력을 이용, 통상적인 전자현미경보다 두꺼운 시료를 관찰할 수 있다는 장점과 높은 해상력으로 조직이나 세포의 3차원적 구조 연구에 많이 이용되고 있다. 우리나라는 2004년 초고압전자현미경이 설치되어 운용 중이며, 의생물 분야뿐만 아니라 재료 기술분야에서도 활발하게 이용되고 있다. 이 논문에서는 고압전자현미경에 대한 간단한 설명과 최근 발표된 연구결과를 소개하여 형태학자들의 이해를 돕고자 한다.

Keywords

References

  1. Arii T, Hama K: Method of extracting three-dimensional information from HVTEM stereo images of biological materials. J Electron Microsc (Tokyo) 36(4): 177-195, 1987
  2. Bonnet N, Quintana C, Favard P, Favard N: Three-dimensional graphical reconstruction from HVEM stereoviews of biological specimens by means of a microcomputer. Biol Cell 55(1-2):125-138, 1985 https://doi.org/10.1111/j.1768-322X.1985.tb00414.x
  3. Carasso N, Delaunay MC, Favard P, Lechaire JP: Obtention et coloration de coupes epaisses pour la microscopie electronique a haute tension. J Microsc (Paris) 16: 257-268, 1973
  4. Carasso N, Ovtracht L, Favard P: Observation, with high voltage electron microscopy, of the Golgi apparatus on sections of 0,5 to 5 microns thick. C R Acad Sci Hebd Seances Acad Sci D 273(10): 876-879, 1971
  5. Dupouy G, Perrier F, Durrieu L: The observation of living matter by means of an electron microscope operating under very high voltage. C R Hebd Seances Acad Sci 251: 2836-2841, 1960
  6. Favard P, Carasso N: The preparation and observation of thick biological sections in the high voltage electron microscope. J Microsc 97(1): 59-81, 1973 https://doi.org/10.1111/j.1365-2818.1973.tb03761.x
  7. Friend DS, Marray MJ: Osmium impregnation of the Golgi apparatus. Am J Anat 117: 135-150, 1965 https://doi.org/10.1002/aja.1001170109
  8. Glauert AM: The high voltage electron microscope in biology. J Cell Biol 63(3): 717-748, 1974 https://doi.org/10.1083/jcb.63.3.717
  9. Hama K: Biological application of high voltage electron microscopy. J Electron Microsc (Tokyo) 38 Suppl: 156-162, 1989
  10. Hama K, Arii T, Kosaka T: Three-dimensional organization of neuronal and glial processes: high voltage electron microscopy. Microsc Res Tech 29(5): 357-367, 1994 https://doi.org/10.1002/jemt.1070290506
  11. Hama K, Nagata F: High resolution observations of biological sections with a high voltage electron microscope. J Electron Microsc (Tokyo) 19(2): 170-175, 1970
  12. Hama K, Kamino T: Three-dimensional observation of sensory hairs of the lateral line canal organ of the sea eel using thick serial sections. Proceedings of the 3rd International Congress on High Voltage Electron Microscopy, Oxford, pp. 423-425, 1974
  13. Hama K, Saito K: Gap junctions between the supporting cells in some acoustico-vestibular receptors. J Neurocytol 6(1): 1-12, 1977 https://doi.org/10.1007/BF01175410
  14. Hayashi H: Observations on the octameric molecular arrangement of the protein liquid crystal, newt yolk granules. J Electron Microsc (Tokyo) 26 Suppl: 351-354, 1977
  15. Igarashi H, Nasu F, Inomata K, Arii T: High-voltage electron microscopy of E-PTA-stained synaptic junctions in the rat frontal cortex. Brain Res 473(2): 365-368, 1988 https://doi.org/10.1016/0006-8993(88)90867-0
  16. Kim IS: High voltage electron microscopy of structure patterns of plastid crystalline bodies in Sedum rotundifolium. Korean J Electron Microsc 36(2): 73-82, 2006a
  17. Kim IS, Park SC, Han SS, Kim ES: Three-dimensional analysis of the mesophyll plastids using ultra high voltage electron Microscopy. Korean J Electron Microsc 36(3): 217-226, 2006b
  18. Kim JW, Lee SJ, Rhyu IJ: Construction of anaglyphic stereo pair image using Adobe $Photoshop^{\circledR}$ program. Korean J Electron Microsc 37(2): 143-146, 2007
  19. Kim JW, Segal M, Rhyu IJ: Investigation of cultured hippocampal neuron with high voltage electron microscopy. Korean J Electron Microsc 37th Conference, 2006
  20. Kim KS, Hwang HG, Kang HJ, Hwang IK, Lee YT, Choi HC: Ultrastructure of individual and compound starch granules in isolation preparation from a high-quality, low-amylose rice, ilpumbyeo, and its mutant, G2, a high-dietary fiber, highamylose rice. J Agric Food Chem 53(22): 8745-8751, 2005 https://doi.org/10.1021/jf051194a
  21. Kosaka T, Hama K: Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axon in the olfactory bulb of the goldfish (Carassius auratus) I. Golgi impregnation and serial thin sectioning studies. J Comp Neurol 186(3):301-319, 1979 https://doi.org/10.1002/cne.901860302
  22. Kosaka T, Hama K: Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axon in the olfactory bulb of the goldfish (Carassius auratus) II. Fine structure of the ruffed cell. J Comp Neurol 193(1): 119-145, 1980 https://doi.org/10.1002/cne.901930109
  23. Kosaka T, Hama K: Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axon in the olfactory bulb of the goldfish (Carassius auratus). III. Three-dimensional structure of the ruffed cell dendrite. J Comp Neurol 201(4): 571-587, 1981 https://doi.org/10.1002/cne.902010408
  24. Kosaka T, Hama K: Structure of the mitral cell in the olfactory bulb of the goldfish (Carassius auratus). J Comp Neurol 212(4):365-384, 1982 https://doi.org/10.1002/cne.902120405
  25. Lee KJ, Jung JG, Arii T, Imoto K, Rhyu IJ: Morphological changes in dendritic spines of Purkinje cells associated with motor learning. Neurobiol Learn Mem 88(4): 445-450, 2007 https://doi.org/10.1016/j.nlm.2007.06.001
  26. Lee KJ, Kim H, Kim TS, Park SH, Rhyu IJ: Morphological analysis of spine shapes of Purkinje cell dendrites in the rat cerebellum using high-voltage electron microscopy. Neurosci Lett 359(1-2): 21-24, 2004 https://doi.org/10.1016/j.neulet.2004.01.071
  27. Lee KJ, Kweon HS, Kang JS, Rhyu IJ: 3-dimensional reconstruction of parallel fiber-purkinje cell synapses using high-voltage electron microscopy. Korean J Electron Microsc 35(1): 31-39, 2005a
  28. Lee KJ, Park CH, Rhyu IJ: Efficient three-dimensional reconstruction of synapse with high-voltage electron microscopy. J Electron Microsc (Tokyo) 54(2): 139-141, 2005b https://doi.org/10.1093/jmicro/dfi002
  29. Locke M, Krishnan N: Hot alcoholic phosphotungstic acid and uranyl acetate as routine stains for thick and thin sections. J Cell Biol 50(2): 550-557, 1971 https://doi.org/10.1083/jcb.50.2.550
  30. Lucic V, Forster F, Baumeister W: Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74: 833-865, 2005
  31. Martone ME, Gupta A, Wong M, Qian X, Sosinsky G, Ludascher B, Ellisman MH: A cell-centered database for electron tomographic data. J Struct Biol 138(1-2): 145-155, 2002 https://doi.org/10.1016/S1047-8477(02)00006-0
  32. Massover WH: Complex surface invaginations in frog oocytes. J Cell Biol 58: 485-491, 1973 https://doi.org/10.1083/jcb.58.2.485
  33. Massover WH, Lacaze JC, Durrieu L: The ultrastructure of ferritin macromolecules. I. Ultrahigh voltage electron microscopy (1-3 MeV). J Ultrastruct Res 43(5): 460-475, 1973 https://doi.org/10.1016/S0022-5320(73)90022-1
  34. Mun JY, Arii T, Hama K, Han SS: Rhabdomere formation in late pupal stage of Drosophila melanogaster; observation using hugh-pressure freezing and freeze-substitution, and highvoltage electron microscopy. Korean J Electron Microsc 37(1): 35-42, 2007
  35. Mun JY, Lee KE, Han SS: Techniques for cryo-electron tomography in biological field. Korean J Electron Microsc 38(2): 73-79, 2008
  36. Nagata T: Three-dimensional high voltage electron microscopy of thick biological specimens. Micron 32(4): 387-404, 2001 https://doi.org/10.1016/S0968-4328(00)00005-6
  37. Nagura H, Asai J, Noda A, Hayakawa T, Nakajima S: Ultramicromorphological study of pancreatic fibrosis using the pancreatic biospy material. Nippon Rinsho 31(11): 3277-3285, 1973
  38. Nakamura S, Asai J, Hama K: The transverse tubular system of rat myocardium: its morphology and morphometry in the developing and adult animal. Anat Embryol (Berl) 173(3): 307-315, 1986 https://doi.org/10.1007/BF00318914
  39. Nishida T, Nishikawa Y, Jinnai H, Arii T, Yoshimura R, Endo Y:Ultrastructural localization of the neurotrophin receptor (TrkA) in cultured rat heochromocytoma PC12 Cells: threedimensional image analysis by high voltage electron microscopy. Biomed Res 28(3): 161-167, 2007 https://doi.org/10.2220/biomedres.28.161
  40. Palay SL, Chan-Palay V: High voltage electron microscopy of the central nervous system in Golgi preparations. J Microsc 97(1): 41-47, 1973 https://doi.org/10.1111/j.1365-2818.1973.tb03759.x
  41. Park SH, Oh SG, Mun JY, Han SS: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf B Biointerfaces 48(2):112-118, 2006 https://doi.org/10.1016/j.colsurfb.2006.01.006
  42. Perkins GA, Sosinsky GE, Ghassemzadeh S, Perez A, Jones Y, Ellisman MH: Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J Struct Biol 161(3): 469-480, 2008 https://doi.org/10.1016/j.jsb.2007.10.005
  43. Porter KR, Anderson KL: The structure of the cytoplasmic matrix preserved by freeze-drying and freeze-substitution. Eur J Cell Biol 29(1): 83-96, 1982
  44. Rambourg A: Three dimensional configuration of cell organelles. J Electron Microsc (Tokyo) 26 Suppl: 327-331, 1977
  45. Rambourg A, Clermont Y, Marraud A: Three-dimensional structure of the osmium-impregnated Golgi apparatus as seen in the high voltage electron microscope. Am J Anat 140(1): 27-45, 1974 https://doi.org/10.1002/aja.1001400103
  46. Takaoka A, Hasegawa T, Yoshida K, Mori H: Microscopic tomography with ultra-HVEM and applications. Ultramicroscopy 108(3): 230-238, 2007 https://doi.org/10.1016/j.ultramic.2007.06.008
  47. Takaoka A, Yoshida K, Mori H, Hayashi S, Young SJ, Ellisman MH: International telemicroscopy with a 3 MV ultrahigh voltage electron microscope. Ultramicroscopy 83(1-2): 93-101, 2000 https://doi.org/10.1016/S0304-3991(99)00172-2
  48. Takasaka T, Shinkawa H: Serial section reconstruction of the guinea pig outer hair cells as studied with a high-voltage electron microscope and a computer-graphic display. Acta Otolaryngol Suppl 435: 7-20, 1987
  49. Takata K, Hirano H: Whole-cell-mount cytochemistry by the colloidal gold labeling method. Combined transmission and scanning electron microscopic study of ConA binding sites in mouse macrophages. Histochemistry 81(5): 435-439, 1984 https://doi.org/10.1007/BF00489746
  50. Taylor KA, Glaeser RM: Electron diffraction of frozen, hydrated protein crystals. Science 186(4168): 1036-1037, 1974 https://doi.org/10.1126/science.186.4168.1036
  51. Tsukita S, Ishikawa H: Three-dimensional distribution of smooth endoplasmic reticulum in myelinated axons. J Electron Microsc (Tokyo) 25(3): 141-149, 1976
  52. Van D, AC, Oosterkamp WJ, Lepoole JB: An experimental electron microscope for 400 kilovolts. Philips Technical Rev 9: 193-201, 1947
  53. Venable JH, Coggeshall R: A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25: 407-408, 1965 https://doi.org/10.1083/jcb.25.2.407